{"title":"Isomorphisms between lattices of hyperinvariant subspaces","authors":"David Mingueza , M. Eulàlia Montoro , Alicia Roca","doi":"10.1016/j.laa.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Given two nilpotent endomorphisms, we determine when their lattices of hyperinvariant subspaces are isomorphic. The study of the lattice of hyperinvariant subspaces can be reduced to the nilpotent case when the endomorphism has a Jordan-Chevalley decomposition; for example, it occurs if the underlying field is the field of complex numbers.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003744","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given two nilpotent endomorphisms, we determine when their lattices of hyperinvariant subspaces are isomorphic. The study of the lattice of hyperinvariant subspaces can be reduced to the nilpotent case when the endomorphism has a Jordan-Chevalley decomposition; for example, it occurs if the underlying field is the field of complex numbers.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.