{"title":"Integrating machine learning techniques for predicting ground vibration in pile driving activities","authors":"","doi":"10.1016/j.compgeo.2024.106784","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007237","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.