{"title":"A review on daidzein as food supplement: Exploring its phytopharmacological and preclinical status","authors":"Sana Ahmad, Farogh Ahsan, Javed Akhtar Ansari, Tarique Mahmood, Arshiya Shamim, Shahzadi Bano, Reshu Tiwari, Vaseem Ahamad Ansari, Shafiurrahman, Mithilesh Kesari","doi":"10.1002/efd2.70008","DOIUrl":null,"url":null,"abstract":"<p>A natural product is a compound or substance originating from a living organism and found in nature. Daidzein belongs to the class of bioflavonoids, which are plant-derived compounds with various biological activities. Predominantly exists in soybeans and several legumes in either glycoside or aglycone forms. Its primary chemical constituents include metabolites like equol and trihydroxy isoflavone, generated through the influence of intestinal bacteria. Daidzein has exhibited pharmacological impacts on different ailments, including cardiovascular disease, cancer, diabetes, skin disorders, osteoporosis, and neurodegenerative disorders. Daidzein's mechanisms of action involve interactions with estrogen receptors, as well as its antioxidant and anti-inflammatory properties, along with its ability to regulate apoptosis and the cell cycle. In efforts to enhance its solubility, stability, bioavailability, and targeting, daidzein has been innovatively formulated into novel dosage forms, including nanoparticles, liposomes, microemulsions, and nanosuspensions. As a promising nutraceutical, daidzein presents multiple health benefits and holds potential for various clinical applications. Additional investigation is required to comprehend the molecular mechanisms of this phenomenon and assess its safety. The purpose of this review is to provide a short description of the therapeutic properties, chemical composition, traditional use, toxicology profile, new insights on the dosage form, and future prospects of daidzein.</p>","PeriodicalId":11436,"journal":{"name":"eFood","volume":"5 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/efd2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eFood","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/efd2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A natural product is a compound or substance originating from a living organism and found in nature. Daidzein belongs to the class of bioflavonoids, which are plant-derived compounds with various biological activities. Predominantly exists in soybeans and several legumes in either glycoside or aglycone forms. Its primary chemical constituents include metabolites like equol and trihydroxy isoflavone, generated through the influence of intestinal bacteria. Daidzein has exhibited pharmacological impacts on different ailments, including cardiovascular disease, cancer, diabetes, skin disorders, osteoporosis, and neurodegenerative disorders. Daidzein's mechanisms of action involve interactions with estrogen receptors, as well as its antioxidant and anti-inflammatory properties, along with its ability to regulate apoptosis and the cell cycle. In efforts to enhance its solubility, stability, bioavailability, and targeting, daidzein has been innovatively formulated into novel dosage forms, including nanoparticles, liposomes, microemulsions, and nanosuspensions. As a promising nutraceutical, daidzein presents multiple health benefits and holds potential for various clinical applications. Additional investigation is required to comprehend the molecular mechanisms of this phenomenon and assess its safety. The purpose of this review is to provide a short description of the therapeutic properties, chemical composition, traditional use, toxicology profile, new insights on the dosage form, and future prospects of daidzein.
期刊介绍:
eFood is the official journal of the International Association of Dietetic Nutrition and Safety (IADNS) which eFood aims to cover all aspects of food science and technology. The journal’s mission is to advance and disseminate knowledge of food science, and to promote and foster research into the chemistry, nutrition and safety of food worldwide, by supporting open dissemination and lively discourse about a wide range of the most important topics in global food and health.
The Editors welcome original research articles, comprehensive reviews, mini review, highlights, news, short reports, perspectives and correspondences on both experimental work and policy management in relation to food chemistry, nutrition, food health and safety, etc. Research areas covered in the journal include, but are not limited to, the following:
● Food chemistry
● Nutrition
● Food safety
● Food and health
● Food technology and sustainability
● Food processing
● Sensory and consumer science
● Food microbiology
● Food toxicology
● Food packaging
● Food security
● Healthy foods
● Super foods
● Food science (general)