{"title":"A mathematical model for ultrafast laser processing of the slight curvature surface","authors":"Jing Wang, Yaohua Hou, Jingzhou Zhang, Hualong Zhao","doi":"10.1016/j.optlastec.2024.111786","DOIUrl":null,"url":null,"abstract":"<div><div>The precise control of the amount of material removal in the ultrafast laser ablation process is hindered by a number of factors, rendering it unable to meet the demand for accurate processing of complex surfaces. It is essential to employ an effective simulation method to predict the outcomes of ablation processing, thereby facilitating subsequent optimisation of parameters and precision process research. In this paper, a pulse-by-pulse mathematical model is presented for simulating the ultrafast laser ablation process for general materials. The mathematical model of the focused Gaussian beam considers the influences of key parameters, including the propagation direction of the beam, the position of the focal point, and the laser fluence, among others. The evolution process of etching materials was analysed, and the material ablation rate under different beam states was calculated. The actual processing was then simulated pulse by pulse using the grid division method. The model is straightforward and accessible, with parameters determined through a limited number of calibration experiments. The simulation accuracy for points, lines, and planes is approximately 0.9, with a mean simulation time of 1.3 s for a single pulse. The ablation model is well-suited for simulating complex curved surfaces, offering a valuable tool for precise ultra-fast laser machining.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111786"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012441","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The precise control of the amount of material removal in the ultrafast laser ablation process is hindered by a number of factors, rendering it unable to meet the demand for accurate processing of complex surfaces. It is essential to employ an effective simulation method to predict the outcomes of ablation processing, thereby facilitating subsequent optimisation of parameters and precision process research. In this paper, a pulse-by-pulse mathematical model is presented for simulating the ultrafast laser ablation process for general materials. The mathematical model of the focused Gaussian beam considers the influences of key parameters, including the propagation direction of the beam, the position of the focal point, and the laser fluence, among others. The evolution process of etching materials was analysed, and the material ablation rate under different beam states was calculated. The actual processing was then simulated pulse by pulse using the grid division method. The model is straightforward and accessible, with parameters determined through a limited number of calibration experiments. The simulation accuracy for points, lines, and planes is approximately 0.9, with a mean simulation time of 1.3 s for a single pulse. The ablation model is well-suited for simulating complex curved surfaces, offering a valuable tool for precise ultra-fast laser machining.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems