The Lian-Dou-Qing-Mai Formula activates the PPARγ-LXRα-ABCA1/ABCG1 pathway by regulating IL-10, leading to the promotion of cholesterol efflux and a reduction in atherosclerotic plaques.
{"title":"The Lian-Dou-Qing-Mai Formula activates the PPARγ-LXRα-ABCA1/ABCG1 pathway by regulating IL-10, leading to the promotion of cholesterol efflux and a reduction in atherosclerotic plaques.","authors":"Wenqi Liao, You Li, Haoyan Zhao, Shu Lu","doi":"10.14670/HH-18-803","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To observe the effect of the Lian-Dou-Qing-Mai (LDQM) formula on lipid metabolism in mice and explore its mechanism from the perspective of regulating the PPARγ/LXRα/ABCA1 signaling pathway.</p><p><strong>Methods: </strong>THP-1 cells were induced to transform into foam cells with ox-LDL. Atherosclerosis (AS) models were constructed using a high-fat diet in ApoE-/- mice. Detection kits were used to evaluate triglyceride (TG) and total cholesterol (TC) content; TNF-α, MCP-1, MMP-9, TMP-1, PPARγ, LXRα, ABCA1, and ABCG1 mRNA and protein expression were identified using real-time PCR and western blot. And aortic plaque development and lipid deposition were seen using hematoxylin and eosin (HE) and oil red O staining, respectively.</p><p><strong>Results: </strong>In the cell model, LDQM could inhibit the formation of THP-1 macrophage-derived foam cells and the expression of inflammatory factors, promote macrophage cholesterol efflux, increase the expression of IL-10, and activate the PPARγ-LXRα-ABCA1/ABCG1 pathway. Additional IL-10 treatment further promotes LDQM-induced cholesterol efflux in THP-1 cells; <i>In vivo</i> models, LDQM inhibited the area of atherosclerotic lesions, aortic lipid deposition, and inflammation levels in ApoE-/- mice through IL-10, and activated the expression level of the PPARγ-LXRα-ABCA1/ABCG1 pathway.</p><p><strong>Conclusion: </strong>LDQM may affect the PPARγ/LXRα/ABCA1 signaling pathway through IL-10, regulate lipid metabolism, reduce serum inflammatory expression and lipid deposition, and improve the formation of atheroplaques.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-803","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To observe the effect of the Lian-Dou-Qing-Mai (LDQM) formula on lipid metabolism in mice and explore its mechanism from the perspective of regulating the PPARγ/LXRα/ABCA1 signaling pathway.
Methods: THP-1 cells were induced to transform into foam cells with ox-LDL. Atherosclerosis (AS) models were constructed using a high-fat diet in ApoE-/- mice. Detection kits were used to evaluate triglyceride (TG) and total cholesterol (TC) content; TNF-α, MCP-1, MMP-9, TMP-1, PPARγ, LXRα, ABCA1, and ABCG1 mRNA and protein expression were identified using real-time PCR and western blot. And aortic plaque development and lipid deposition were seen using hematoxylin and eosin (HE) and oil red O staining, respectively.
Results: In the cell model, LDQM could inhibit the formation of THP-1 macrophage-derived foam cells and the expression of inflammatory factors, promote macrophage cholesterol efflux, increase the expression of IL-10, and activate the PPARγ-LXRα-ABCA1/ABCG1 pathway. Additional IL-10 treatment further promotes LDQM-induced cholesterol efflux in THP-1 cells; In vivo models, LDQM inhibited the area of atherosclerotic lesions, aortic lipid deposition, and inflammation levels in ApoE-/- mice through IL-10, and activated the expression level of the PPARγ-LXRα-ABCA1/ABCG1 pathway.
Conclusion: LDQM may affect the PPARγ/LXRα/ABCA1 signaling pathway through IL-10, regulate lipid metabolism, reduce serum inflammatory expression and lipid deposition, and improve the formation of atheroplaques.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.