Frank A F Winiberg, Mathieu Fradet, Rafal Krzysiak, Yangquan Chen, Kamjou Mansour, Aaron C Noell, J Kent Wallace, Lance E Christensen
{"title":"Design and performance of indium seals for size-constrained tunable laser spectrometers.","authors":"Frank A F Winiberg, Mathieu Fradet, Rafal Krzysiak, Yangquan Chen, Kamjou Mansour, Aaron C Noell, J Kent Wallace, Lance E Christensen","doi":"10.1063/5.0206815","DOIUrl":null,"url":null,"abstract":"<p><p>Indium seals have been used extensively in ultra-high vacuum and cryogenic applications. Typically, these seals use indium alongside or in place of other metal gaskets in stainless-steel vacuum flanges, with some custom applications for flanges sealing directly with glass (optics or tubes). Here, we present the design and performance of three pressed indium seals (99.99% In) between aluminum and 0.5 in. diameter sapphire optics and aluminum and gold coated Kovar semiconductor packages (TO-66 and TO-39). Test fixtures were designed to mimic those of future tunable diode laser spectrometers for Earth, planetary, and manned spaceflight environmental monitoring applications. Successful high-hermeticity seals [<10-10 atm cc/s (He)] were achieved for all seals formed with sufficient pressure applied to allow indium to flow between mating surfaces. The hermeticity of the seals was maintained after temperature cycling (-10 to +80 °C, 20 cycles), with the optical seals surviving extended duration tests (-55 to +85 °C, per MIL-STD-883). Semiconductor packages (TO-39) subjected to these extended tests saw a moderate increase in leak rate [∼5 × 10-9 atm cc/s (He)]; however, further testing showed that either the glass-metal package seals or the indium were affected (the sample size was too small to draw firm conclusions for future applications). Overall, these results suggest long-term survivability of indium seals for Kovar-aluminum and sapphire-aluminum interfaces [>10 years at 10-10 atm cc/s (He)], where the coefficient of thermal expansion differs by approximately four times.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206815","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Indium seals have been used extensively in ultra-high vacuum and cryogenic applications. Typically, these seals use indium alongside or in place of other metal gaskets in stainless-steel vacuum flanges, with some custom applications for flanges sealing directly with glass (optics or tubes). Here, we present the design and performance of three pressed indium seals (99.99% In) between aluminum and 0.5 in. diameter sapphire optics and aluminum and gold coated Kovar semiconductor packages (TO-66 and TO-39). Test fixtures were designed to mimic those of future tunable diode laser spectrometers for Earth, planetary, and manned spaceflight environmental monitoring applications. Successful high-hermeticity seals [<10-10 atm cc/s (He)] were achieved for all seals formed with sufficient pressure applied to allow indium to flow between mating surfaces. The hermeticity of the seals was maintained after temperature cycling (-10 to +80 °C, 20 cycles), with the optical seals surviving extended duration tests (-55 to +85 °C, per MIL-STD-883). Semiconductor packages (TO-39) subjected to these extended tests saw a moderate increase in leak rate [∼5 × 10-9 atm cc/s (He)]; however, further testing showed that either the glass-metal package seals or the indium were affected (the sample size was too small to draw firm conclusions for future applications). Overall, these results suggest long-term survivability of indium seals for Kovar-aluminum and sapphire-aluminum interfaces [>10 years at 10-10 atm cc/s (He)], where the coefficient of thermal expansion differs by approximately four times.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.