Shenghui Liu, Shichao Cheng, Yu Luo, Jianhe Zhu, Liangbao Liu, Hang Guo, Kunpeng Cui, Minfang An, Liangbin Li
{"title":"A versatile steel belt casting equipment for in situ synchrotron radiation x-ray scattering measurement of polymer films.","authors":"Shenghui Liu, Shichao Cheng, Yu Luo, Jianhe Zhu, Liangbao Liu, Hang Guo, Kunpeng Cui, Minfang An, Liangbin Li","doi":"10.1063/5.0219366","DOIUrl":null,"url":null,"abstract":"<p><p>A steel belt casting equipment, weighing approximately ∼6-7 tons and measuring ∼5 m in length, has been designed and developed for simulating the industrial processing of polymer films and being combined with synchrotron radiation in situ x-ray scattering measurements. Through modification of its modules, it is feasible to implement two distinct film casting modes, namely the wet and the dry casting processes. The speed of a steel belt can span from 0.5 to 8 m/min. The highest experimental temperature and drying wind speed are 300 °C and 6 m/s, respectively. All film casting parameters, such as extrusion speed, distance between die and steel belt, casting speed, temperature, and wind speed, can be adjusted independently. Especially, the control accuracy of the temperature and casting rate can reach ±0.1 °C and ±0.01 m/min, respectively. The feasibility of this equipment has been validated through in situ x-ray scattering tests at the BL10U1 industrial beamline of the Shanghai synchrotron radiation facility. With the assistance of this equipment, the understanding of the physical mechanism behind the film casting process should be improved so that the development of advanced functional polymer films.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219366","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
A steel belt casting equipment, weighing approximately ∼6-7 tons and measuring ∼5 m in length, has been designed and developed for simulating the industrial processing of polymer films and being combined with synchrotron radiation in situ x-ray scattering measurements. Through modification of its modules, it is feasible to implement two distinct film casting modes, namely the wet and the dry casting processes. The speed of a steel belt can span from 0.5 to 8 m/min. The highest experimental temperature and drying wind speed are 300 °C and 6 m/s, respectively. All film casting parameters, such as extrusion speed, distance between die and steel belt, casting speed, temperature, and wind speed, can be adjusted independently. Especially, the control accuracy of the temperature and casting rate can reach ±0.1 °C and ±0.01 m/min, respectively. The feasibility of this equipment has been validated through in situ x-ray scattering tests at the BL10U1 industrial beamline of the Shanghai synchrotron radiation facility. With the assistance of this equipment, the understanding of the physical mechanism behind the film casting process should be improved so that the development of advanced functional polymer films.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.