Yingxin Liu, Fangliang Li, Tao Fei, Xue Lin, Lu Wang, Zhonghua Liu
{"title":"Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.","authors":"Yingxin Liu, Fangliang Li, Tao Fei, Xue Lin, Lu Wang, Zhonghua Liu","doi":"10.1016/j.foodchem.2024.141329","DOIUrl":null,"url":null,"abstract":"<p><p>Aquilaria sinensis leaves have long been consumed as a popular replacement tea for lowering postprandial blood glucose levels, but their specific functional components remain unclear. In this study, Aquilaria sinensis leaf-tea 70 % ethanol extract (ALTE) exhibited excellent anti-α-glucosidase activity (IC<sub>50</sub> = 6.93 ± 1.91 μg/mL) and promoted glucose consumption ability in 3 T3-L1 preadipocyte cells. Subsequently phenolic compositions of ALTE were identified for the first time. After that, five potential α-glucosidase inhibitors (α-GIs) including cynaroside-3,5-diglucose, malvidin 3-glucose, epicatechin, epigallocatechin gallate, and dihydromyricetin in ALTE were screened using a targeted bio-affinity ultrafiltration-HPLC/MS method. Moreover, these five α-GIs all showed good anti-α-glucosidase effects and glucose consumption-promoting ability. Furthermore, the binding properties and inhibition mechanisms of five α-GIs to α-glucosidase were further analyzed via enzyme inhibition kinetics, molecular docking, and molecular dynamics simulation. This study confirms that Aquilaria sinensis leaf-tea is effective in preventing post-hyperglycemia in vitro models, suggesting potential for future research in human trials.</p>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.141329","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Aquilaria sinensis leaves have long been consumed as a popular replacement tea for lowering postprandial blood glucose levels, but their specific functional components remain unclear. In this study, Aquilaria sinensis leaf-tea 70 % ethanol extract (ALTE) exhibited excellent anti-α-glucosidase activity (IC50 = 6.93 ± 1.91 μg/mL) and promoted glucose consumption ability in 3 T3-L1 preadipocyte cells. Subsequently phenolic compositions of ALTE were identified for the first time. After that, five potential α-glucosidase inhibitors (α-GIs) including cynaroside-3,5-diglucose, malvidin 3-glucose, epicatechin, epigallocatechin gallate, and dihydromyricetin in ALTE were screened using a targeted bio-affinity ultrafiltration-HPLC/MS method. Moreover, these five α-GIs all showed good anti-α-glucosidase effects and glucose consumption-promoting ability. Furthermore, the binding properties and inhibition mechanisms of five α-GIs to α-glucosidase were further analyzed via enzyme inhibition kinetics, molecular docking, and molecular dynamics simulation. This study confirms that Aquilaria sinensis leaf-tea is effective in preventing post-hyperglycemia in vitro models, suggesting potential for future research in human trials.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.