Baixuan Yang , Ahmed Alkhafaji , Junjie Ma , Hui-Ping Wang , Blair E Carlson , Wei Tong
{"title":"A fixture design for controlling impact of the airflow on laser welding of galvanized steels","authors":"Baixuan Yang , Ahmed Alkhafaji , Junjie Ma , Hui-Ping Wang , Blair E Carlson , Wei Tong","doi":"10.1016/j.optlastec.2024.111736","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines the effects of horizontal airflow on laser welding of galvanized steels. A uniform laminar flow was delivered using a specially designed external airflow device, and its impact on vapor plume dynamics and keyhole behavior was analyzed with synchronized high-speed cameras. The analysis showed that, under Follow airflow conditions, penetration depth was notably reduced compared to Against conditions, with increased surface defects observed in galvanized steel. Keyhole instability, as observed in the frequency spectrum (≤500 Hz), was more pronounced under Follow conditions. Theoretical analysis identified two main effects: 1) Airflow in the Against condition helps maintain keyhole opening by dragging melt away, while in the Follow condition, it drags melt toward the keyhole, leading to shrinkage. 2) Airflow affects the plasma plume, with Follow conditions increasing laser energy attenuation and resulting in shallow penetration. A hollow rectangular block fixture was designed to shield the molten pool and keyhole region from airflow effects. CFD modeling and experiments with a 5 mm block demonstrated reduced airflow impacts, improved process stability, and defect-free welds in both bare and galvanized steel.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111736"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224011940","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines the effects of horizontal airflow on laser welding of galvanized steels. A uniform laminar flow was delivered using a specially designed external airflow device, and its impact on vapor plume dynamics and keyhole behavior was analyzed with synchronized high-speed cameras. The analysis showed that, under Follow airflow conditions, penetration depth was notably reduced compared to Against conditions, with increased surface defects observed in galvanized steel. Keyhole instability, as observed in the frequency spectrum (≤500 Hz), was more pronounced under Follow conditions. Theoretical analysis identified two main effects: 1) Airflow in the Against condition helps maintain keyhole opening by dragging melt away, while in the Follow condition, it drags melt toward the keyhole, leading to shrinkage. 2) Airflow affects the plasma plume, with Follow conditions increasing laser energy attenuation and resulting in shallow penetration. A hollow rectangular block fixture was designed to shield the molten pool and keyhole region from airflow effects. CFD modeling and experiments with a 5 mm block demonstrated reduced airflow impacts, improved process stability, and defect-free welds in both bare and galvanized steel.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems