{"title":"Realization of nonvolatile polarization switch based on right-angle Sb2S3 embedded in 4H-SiC waveguide","authors":"Danfeng Zhu, Yaling Wang, Dingnan Deng, Junbo Chen, Shaobin Qiu","doi":"10.1016/j.optlastec.2024.111826","DOIUrl":null,"url":null,"abstract":"<div><p>A nonvolatile polarization switch is proposed numerically assisted by right-angle Sb<sub>2</sub>S<sub>3</sub> inlaid in a strip 4H-SiC waveguide. The polarization of incident light can be engineered by the phase states of Sb<sub>2</sub>S<sub>3</sub>. When the Sb<sub>2</sub>S<sub>3</sub> is crystalline, a TE0-TM0 polarization conversion is achieved with insertion loss (IL) of 0.22 dB and polarization conversion efficiency (PCE) of 98.36 % at the wavelength of 1550 nm. As long as the Sb<sub>2</sub>S<sub>3</sub> is switched to the amorphous state, the polarization conversion effect becomes negligible with IL < 0.014 dB and PCE < 3.16 % across 1500–1600 nm waveband. Moreover, the robustness analysis demonstrates that the proposed structure maintains its functionality within ± 10 nm deviations of Δ<em>h</em>, Δ<em>w</em>, Δ<em>l</em>, and Δ<em>d</em>. The low-loss Sb<sub>2</sub>S<sub>3</sub>-assisted polarization switch offers a novel methodology for nonvolatile switching to programmable integrated optics, which can be deployed in polarization manipulation and neuromorphic optical computing.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012842","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A nonvolatile polarization switch is proposed numerically assisted by right-angle Sb2S3 inlaid in a strip 4H-SiC waveguide. The polarization of incident light can be engineered by the phase states of Sb2S3. When the Sb2S3 is crystalline, a TE0-TM0 polarization conversion is achieved with insertion loss (IL) of 0.22 dB and polarization conversion efficiency (PCE) of 98.36 % at the wavelength of 1550 nm. As long as the Sb2S3 is switched to the amorphous state, the polarization conversion effect becomes negligible with IL < 0.014 dB and PCE < 3.16 % across 1500–1600 nm waveband. Moreover, the robustness analysis demonstrates that the proposed structure maintains its functionality within ± 10 nm deviations of Δh, Δw, Δl, and Δd. The low-loss Sb2S3-assisted polarization switch offers a novel methodology for nonvolatile switching to programmable integrated optics, which can be deployed in polarization manipulation and neuromorphic optical computing.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.