Understanding the Transistor Behavior of Electron-Spin Qubits Above Cryogenic Temperatures

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Francesco Lorenzelli;Clement Godfrin;Michele Stucchi;Alexander Grill;Ruoyu Li;Danny Wan;Kristiaan De Greve;Erik Jan Marinissen;Georges Gielen
{"title":"Understanding the Transistor Behavior of Electron-Spin Qubits Above Cryogenic Temperatures","authors":"Francesco Lorenzelli;Clement Godfrin;Michele Stucchi;Alexander Grill;Ruoyu Li;Danny Wan;Kristiaan De Greve;Erik Jan Marinissen;Georges Gielen","doi":"10.1109/LED.2024.3463009","DOIUrl":null,"url":null,"abstract":"Electron-spin qubits are among the most promising platforms for the realization of a large-scale quantum computer. Physical limitations dictate their operation at cryogenic temperatures, in practice often well below 1 K. This requirement implies the employment of a refrigerator featuring long cooldown times and the need for die packaging, thereby strongly limiting the number of devices that can be measured simultaneously. In our work, we evaluate traditional transistor metrics to enable fast wafer-level screening of electron-spin qubit devices above cryogenic temperatures. To the best of our knowledge, a clear link between quantum dot metrics measured below 2 K and traditional transistor metrics measured at higher temperatures has not yet been identified. In this letter, we study the correlation between 10 mK measurements in the few-electron regime, and traditional transistor metrics at different temperatures. We observe a strong correlation up to 77 K, while correlations at higher temperatures are much less pronounced. We analyze this poor correlation via room-temperature TCAD simulations, showing that the underlying physics changes due to a considerable contribution of the substrate current to the device’s off current above 77 K.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2217-2220"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10683710/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electron-spin qubits are among the most promising platforms for the realization of a large-scale quantum computer. Physical limitations dictate their operation at cryogenic temperatures, in practice often well below 1 K. This requirement implies the employment of a refrigerator featuring long cooldown times and the need for die packaging, thereby strongly limiting the number of devices that can be measured simultaneously. In our work, we evaluate traditional transistor metrics to enable fast wafer-level screening of electron-spin qubit devices above cryogenic temperatures. To the best of our knowledge, a clear link between quantum dot metrics measured below 2 K and traditional transistor metrics measured at higher temperatures has not yet been identified. In this letter, we study the correlation between 10 mK measurements in the few-electron regime, and traditional transistor metrics at different temperatures. We observe a strong correlation up to 77 K, while correlations at higher temperatures are much less pronounced. We analyze this poor correlation via room-temperature TCAD simulations, showing that the underlying physics changes due to a considerable contribution of the substrate current to the device’s off current above 77 K.
了解电子引脚质子在低温以上的晶体管行为
电子自旋量子比特是实现大规模量子计算机的最有前途的平台之一。这一要求意味着需要使用冷却时间较长的冰箱,并需要进行芯片封装,从而极大地限制了可同时测量的器件数量。在我们的工作中,我们评估了传统的晶体管指标,以实现在低温以上对电子自旋量子比特器件进行快速晶圆级筛选。据我们所知,在 2 K 以下测量的量子点指标与在更高温度下测量的传统晶体管指标之间尚未发现明确的联系。在这封信中,我们研究了 10 mK 少电子度量与不同温度下传统晶体管度量之间的相关性。我们观察到高达 77 K 的强相关性,而更高温度下的相关性则不那么明显。我们通过室温 TCAD 仿真分析了这种不明显的相关性,结果表明,在 77 K 以上,由于基底电流对器件关断电流有相当大的贡献,其基本物理原理发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信