{"title":"Hydramethylnon induces mitochondria-mediated apoptosis in BEAS-2B human bronchial epithelial cells","authors":"","doi":"10.1016/j.taap.2024.117102","DOIUrl":null,"url":null,"abstract":"<div><p>Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (<em>Z</em>-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Typically used household chemicals comprise numerous compounds. Determining mixture toxicity, as observed when using household chemicals containing multiple substances, is of considerable importance from a regulatory perspective. Upon examining the toxic effects of household chemical mixtures, we observed that hydramethylnon combined with tetramethrin resulted in synergistic toxicity. To determine the unknown toxicity mechanism of hydramethylnon, which carries the risk of inhalation exposure when using household chemicals, we conducted a further investigation using BEAS-2B cells, a human bronchial epithelial cell line. Hydramethylnon-induced cytotoxicity was determined following 24 and 48 h of exposure using the water-soluble tetrazolium 1 and lactate dehydrogenase assays. To elucidate the toxicity mechanism, we utilized flow cytometry and measured the levels of apoptosis-related proteins and caspase activities. Given that hydramethylnon, as an insecticide, disrupts the mitochondrial electron transfer chain, we analyzed the relevant mechanisms, including mitochondrial superoxide levels as well as the mitochondrial membrane potential (MMP). Hydramethylnon dose-dependently induced BEAS-2B cell apoptosis via the intrinsic pathway. Furthermore, it significantly increased mitochondrial superoxide levels and disrupted the MMP. Pre-treatment with a caspase inhibitor (Z-DEVD-FMK) confirmed that hydramethylnon induced caspase-dependent apoptosis. Apoptosis, a key event in the toxicological process of chemicals, can lead to lung diseases, including fibrosis and cancer. The results of the present study suggest a mechanism of toxicity of hydramethrylnon, an organofluorine biocide whose toxicity has been little studied, to the lung epithelium. Considering the potential risks associated with inhalation exposure, these results highlight the need for careful management and regulation of hydramethylnon.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.