{"title":"Development and Evaluation of Remote Laboratory System for Simulated Induction Motor","authors":"Hisao Fukumoto;Tomoki Kamio;Toshihiro Matsuo;Takayuki Nitta;Hideki Shimada;Masashi Ohchi;Hideaki Itoh","doi":"10.1109/TE.2024.3454236","DOIUrl":null,"url":null,"abstract":"Contribution: A remote laboratory system for induction motors was developed in this study. By creating an original simulated induction motor, the structure of the motor can be observed, and the current and magnetic flux can be measured safely.Background: Electrical machinery has little appeal to young engineers. Such machinery deals with invisible electromagnetic phenomena; thus, it is difficult for young engineers to understand the involved principles. The risks associated with high voltage and high-speed rotation are also considered reasons for this low interest.Intended Outcomes: The remote laboratory system enables remote learning even in educational institutions that do not have specialized simulated induction motors. In addition, it is possible to repeat experimental learning as required to ensure that the student has learned the content sufficiently.Application Design: This system is designed such that it can be used without teachers or teaching assistants support, and the number of controllable functions and operations increase gradually according to the learning content.Findings: The proposed remote laboratory system was evaluated experimentally with 46 student participants from Saga University and the Chiba Institute of Technology to confirm the usefulness of the system. Tests conducted before and after using the system confirmed that the participant’s understanding of induction motors improved. In addition, the results of a system usability scale evaluation confirmed that there were no problems with operation of the remote laboratory system.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":"68 1","pages":"79-85"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679921/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Contribution: A remote laboratory system for induction motors was developed in this study. By creating an original simulated induction motor, the structure of the motor can be observed, and the current and magnetic flux can be measured safely.Background: Electrical machinery has little appeal to young engineers. Such machinery deals with invisible electromagnetic phenomena; thus, it is difficult for young engineers to understand the involved principles. The risks associated with high voltage and high-speed rotation are also considered reasons for this low interest.Intended Outcomes: The remote laboratory system enables remote learning even in educational institutions that do not have specialized simulated induction motors. In addition, it is possible to repeat experimental learning as required to ensure that the student has learned the content sufficiently.Application Design: This system is designed such that it can be used without teachers or teaching assistants support, and the number of controllable functions and operations increase gradually according to the learning content.Findings: The proposed remote laboratory system was evaluated experimentally with 46 student participants from Saga University and the Chiba Institute of Technology to confirm the usefulness of the system. Tests conducted before and after using the system confirmed that the participant’s understanding of induction motors improved. In addition, the results of a system usability scale evaluation confirmed that there were no problems with operation of the remote laboratory system.
期刊介绍:
The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.