M. Ivory, C. D. Nordquist, K. Young, C. W. Hogle, S. M. Clark, M. C. Revelle
{"title":"AC Zeeman effect in microfabricated surface traps","authors":"M. Ivory, C. D. Nordquist, K. Young, C. W. Hogle, S. M. Clark, M. C. Revelle","doi":"10.1063/5.0204413","DOIUrl":null,"url":null,"abstract":"Quantum processors and atomic clocks based on trapped ions often utilize an ion’s hyperfine transition as the qubit state or frequency reference, respectively. These states are a good choice because they are insensitive in first order to magnetic field fluctuations, leading to long coherence times and stable frequency splittings. In trapped ions, however, these states are still subject to the second order AC Zeeman effect due to the necessary presence of an oscillating magnetic field used to confine the ions in a Paul trap configuration. Here, we measure the frequency shift of the 2S1/2 hyperfine transition of a 171Yb+ ion caused by the radio frequency (RF) electromagnetic field used to create confinement in several microfabricated surface trap designs. By comparing different trap designs, we show that two key design modifications significantly reduce the AC Zeeman effect experienced by the ion: (1) an RF ground layer routed directly below the entire RF electrode, and (2) a symmetric RF electrode. Both of these changes lead to better cancellation of the AC magnetic field and, thus, overall reduced frequency shifts due to the AC Zeeman effect and reduced variation across the device. These improvements enable a more homogeneous environment for quantum computing and can reduce errors for precision applications such as atomic clocks.","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"32 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0204413","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum processors and atomic clocks based on trapped ions often utilize an ion’s hyperfine transition as the qubit state or frequency reference, respectively. These states are a good choice because they are insensitive in first order to magnetic field fluctuations, leading to long coherence times and stable frequency splittings. In trapped ions, however, these states are still subject to the second order AC Zeeman effect due to the necessary presence of an oscillating magnetic field used to confine the ions in a Paul trap configuration. Here, we measure the frequency shift of the 2S1/2 hyperfine transition of a 171Yb+ ion caused by the radio frequency (RF) electromagnetic field used to create confinement in several microfabricated surface trap designs. By comparing different trap designs, we show that two key design modifications significantly reduce the AC Zeeman effect experienced by the ion: (1) an RF ground layer routed directly below the entire RF electrode, and (2) a symmetric RF electrode. Both of these changes lead to better cancellation of the AC magnetic field and, thus, overall reduced frequency shifts due to the AC Zeeman effect and reduced variation across the device. These improvements enable a more homogeneous environment for quantum computing and can reduce errors for precision applications such as atomic clocks.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.