M. Ivory, C. D. Nordquist, K. Young, C. W. Hogle, S. M. Clark, M. C. Revelle
{"title":"AC Zeeman effect in microfabricated surface traps","authors":"M. Ivory, C. D. Nordquist, K. Young, C. W. Hogle, S. M. Clark, M. C. Revelle","doi":"10.1063/5.0204413","DOIUrl":null,"url":null,"abstract":"Quantum processors and atomic clocks based on trapped ions often utilize an ion’s hyperfine transition as the qubit state or frequency reference, respectively. These states are a good choice because they are insensitive in first order to magnetic field fluctuations, leading to long coherence times and stable frequency splittings. In trapped ions, however, these states are still subject to the second order AC Zeeman effect due to the necessary presence of an oscillating magnetic field used to confine the ions in a Paul trap configuration. Here, we measure the frequency shift of the 2S1/2 hyperfine transition of a 171Yb+ ion caused by the radio frequency (RF) electromagnetic field used to create confinement in several microfabricated surface trap designs. By comparing different trap designs, we show that two key design modifications significantly reduce the AC Zeeman effect experienced by the ion: (1) an RF ground layer routed directly below the entire RF electrode, and (2) a symmetric RF electrode. Both of these changes lead to better cancellation of the AC magnetic field and, thus, overall reduced frequency shifts due to the AC Zeeman effect and reduced variation across the device. These improvements enable a more homogeneous environment for quantum computing and can reduce errors for precision applications such as atomic clocks.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0204413","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum processors and atomic clocks based on trapped ions often utilize an ion’s hyperfine transition as the qubit state or frequency reference, respectively. These states are a good choice because they are insensitive in first order to magnetic field fluctuations, leading to long coherence times and stable frequency splittings. In trapped ions, however, these states are still subject to the second order AC Zeeman effect due to the necessary presence of an oscillating magnetic field used to confine the ions in a Paul trap configuration. Here, we measure the frequency shift of the 2S1/2 hyperfine transition of a 171Yb+ ion caused by the radio frequency (RF) electromagnetic field used to create confinement in several microfabricated surface trap designs. By comparing different trap designs, we show that two key design modifications significantly reduce the AC Zeeman effect experienced by the ion: (1) an RF ground layer routed directly below the entire RF electrode, and (2) a symmetric RF electrode. Both of these changes lead to better cancellation of the AC magnetic field and, thus, overall reduced frequency shifts due to the AC Zeeman effect and reduced variation across the device. These improvements enable a more homogeneous environment for quantum computing and can reduce errors for precision applications such as atomic clocks.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.