Haijin Wang, Mengxiao Wang, Wuxia Yang, Runfeng Ni, Lin Ma, Dan Wang, Chao Yan, Yuhong Wu, Baoshan Liu, Aidi Wang
{"title":"NingXueShengBan Decoction Regulates Immune Homeostasis by PI3 K/Akt/mTOR and TLR4/NF-κB Signaling Pathways in Immune Thrombocytopenia Patients","authors":"Haijin Wang, Mengxiao Wang, Wuxia Yang, Runfeng Ni, Lin Ma, Dan Wang, Chao Yan, Yuhong Wu, Baoshan Liu, Aidi Wang","doi":"10.1177/1934578x241276960","DOIUrl":null,"url":null,"abstract":"ObjectiveImmune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. The immune imbalance of T cells is an essential pathological mechanism of ITP, more specific, the balance of Effector T cells (Teff)/Regulatory T cell (Treg) maintains T cell immune homeostasis. Dendritic cells (DC), the largest antigen-presenting cell, interfere with T cell differentiation pathways and exert immune regulatory functions. Our team created and applied the “ NingXueShengBan” (NXSB) decoction. According to our prior studies, we found that NXSB decoction could restore Th17/Treg balance in ITP mice by regulating protein expression in Notch pathway. Therefore, we further research the mechanism of NXSB decoction that regulates ITP immune homeostasis through affecting the interaction between DC and T cells.MethodsIn this study, we collected peripheral blood from health donors and ITP patients and extracted DC and CD4 <jats:sup>+ </jats:sup>T cells then grouped in control group, model group and NXSB group. Moreover, we established a co-culture model simulating the immune environment in ITP patient to further investigate whether NXSB had therapeutic effects by the interaction between DC and CD4 <jats:sup>+ </jats:sup>T cells.ResultsIn the current study, we found that NXSB decoction potently regulated interaction between DC and T cells by inhibiting DC development and function, specifically, the differentiation of CD4<jats:sup>+</jats:sup> T cells was inhibited after NXSB decoction intervened. Our data showed that NXSB decoction inhibited Toll-like receptor 4 (TLR-4), reduced the expression of Nuclear factor kappa-B (NF-κB) and led to the reduction of downstream inflammatory factors, thereby inhibiting the inflammatory response. More importantly, NXSB decoction reduced the DC surface expression of activation and maturation markers. Moreover, we detected that the decreased expression of the phosphorylated Phosphatidylinositol 3-kinase (PI3 K), Protein kinase B (Akt), Mammalian target of rapamycin (mTOR), and their downstream effectors indicated, we found that NXSB decoction could inhibit PI3 K/Akt/mTOR signaling pathways significantly.ConclusionsCollectively, our data suggested that NXSB decoction ameliorates ITP-induced immune imbalance via its anti-inflammation and immunosuppressive by regulating TLR-4/ NF-κB and PI3 K/Akt/mTOR signaling pathways.","PeriodicalId":19019,"journal":{"name":"Natural Product Communications","volume":"39 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1934578x241276960","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectiveImmune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease. The immune imbalance of T cells is an essential pathological mechanism of ITP, more specific, the balance of Effector T cells (Teff)/Regulatory T cell (Treg) maintains T cell immune homeostasis. Dendritic cells (DC), the largest antigen-presenting cell, interfere with T cell differentiation pathways and exert immune regulatory functions. Our team created and applied the “ NingXueShengBan” (NXSB) decoction. According to our prior studies, we found that NXSB decoction could restore Th17/Treg balance in ITP mice by regulating protein expression in Notch pathway. Therefore, we further research the mechanism of NXSB decoction that regulates ITP immune homeostasis through affecting the interaction between DC and T cells.MethodsIn this study, we collected peripheral blood from health donors and ITP patients and extracted DC and CD4 + T cells then grouped in control group, model group and NXSB group. Moreover, we established a co-culture model simulating the immune environment in ITP patient to further investigate whether NXSB had therapeutic effects by the interaction between DC and CD4 + T cells.ResultsIn the current study, we found that NXSB decoction potently regulated interaction between DC and T cells by inhibiting DC development and function, specifically, the differentiation of CD4+ T cells was inhibited after NXSB decoction intervened. Our data showed that NXSB decoction inhibited Toll-like receptor 4 (TLR-4), reduced the expression of Nuclear factor kappa-B (NF-κB) and led to the reduction of downstream inflammatory factors, thereby inhibiting the inflammatory response. More importantly, NXSB decoction reduced the DC surface expression of activation and maturation markers. Moreover, we detected that the decreased expression of the phosphorylated Phosphatidylinositol 3-kinase (PI3 K), Protein kinase B (Akt), Mammalian target of rapamycin (mTOR), and their downstream effectors indicated, we found that NXSB decoction could inhibit PI3 K/Akt/mTOR signaling pathways significantly.ConclusionsCollectively, our data suggested that NXSB decoction ameliorates ITP-induced immune imbalance via its anti-inflammation and immunosuppressive by regulating TLR-4/ NF-κB and PI3 K/Akt/mTOR signaling pathways.
期刊介绍:
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.
Natural Product Communications is a peer reviewed, open access journal studying all aspects of natural products, including isolation, characterization, spectroscopic properties, biological activities, synthesis, structure-activity, biotransformation, biosynthesis, tissue culture and fermentation. It covers the full breadth of chemistry, biochemistry, biotechnology, pharmacology, and chemical ecology of natural products.