Jiapei Xu , Dandan Yan , Tingting Zou , Lin Li , Ruizhi Zhang , Longjin Hu , Jianjun Yang
{"title":"Strong modification of double-pulsed femtosecond laser to reinforce anticorrosion of Al alloy surface","authors":"Jiapei Xu , Dandan Yan , Tingting Zou , Lin Li , Ruizhi Zhang , Longjin Hu , Jianjun Yang","doi":"10.1016/j.optlastec.2024.111800","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at the uncertainties and limitations in the laser modification of material surfaces for the corrosion protection, we here exploit a method of double-pulsed femtosecond laser processing with variable picosecond time delays, to effectively reinforce the anticorrosion performance of aluminum alloys. Compared with the traditional single-beam femtosecond laser irradiation, the adoption of double-pulsed laser irradiation especially with the optimal time delay of 50 ps, can decrease about 16 times in the magnitude of the corrosion current density, associated with the increase by 77.8 mV and 23 times in the corrosion potential and the impedance, respectively. The comprehensive insight analyses reveal that such an enhanced anticorrosion phenomenon is originated from the strong modification of the chemical and phase compositions on the metal surface, thus resulting in the higher degree of in-situ material oxidation with a prominent feature of the amorphous state, which can be evidenced not only in the shallow outer-layer surface but also extending to the deep inner-layer region. The significant roles of these laser modifications can be well elucidated by the proposed scenario.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111800"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012581","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the uncertainties and limitations in the laser modification of material surfaces for the corrosion protection, we here exploit a method of double-pulsed femtosecond laser processing with variable picosecond time delays, to effectively reinforce the anticorrosion performance of aluminum alloys. Compared with the traditional single-beam femtosecond laser irradiation, the adoption of double-pulsed laser irradiation especially with the optimal time delay of 50 ps, can decrease about 16 times in the magnitude of the corrosion current density, associated with the increase by 77.8 mV and 23 times in the corrosion potential and the impedance, respectively. The comprehensive insight analyses reveal that such an enhanced anticorrosion phenomenon is originated from the strong modification of the chemical and phase compositions on the metal surface, thus resulting in the higher degree of in-situ material oxidation with a prominent feature of the amorphous state, which can be evidenced not only in the shallow outer-layer surface but also extending to the deep inner-layer region. The significant roles of these laser modifications can be well elucidated by the proposed scenario.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems