{"title":"Porous silicon photoluminescence enhancement by silver dendrites registered with multiphoton microscopy","authors":"Polina Lemeshko , Oleg Korepanov , Elena Podkovyrina , Yuliya Spivak , Vyacheslav Moshnikov , Dmitriy Kozodaev","doi":"10.1016/j.optlastec.2024.111825","DOIUrl":null,"url":null,"abstract":"<div><p>The photoluminescence enhancement of a composite structure on porous silicon with surface-grown silver dendrites was discovered in this study. Silver dendrites are plasmonic antennas that exhibit a slight amplification effect. The small improvement of penetrating light intensity resulted in a significant increase in two-photon absorption, culminating in a remarkable increase in the photoluminescence intensity of the porous silicon material. The manifold enhancement of two-photon absorption was demonstrated by theoretical calculations of its probability.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111825"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012830","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The photoluminescence enhancement of a composite structure on porous silicon with surface-grown silver dendrites was discovered in this study. Silver dendrites are plasmonic antennas that exhibit a slight amplification effect. The small improvement of penetrating light intensity resulted in a significant increase in two-photon absorption, culminating in a remarkable increase in the photoluminescence intensity of the porous silicon material. The manifold enhancement of two-photon absorption was demonstrated by theoretical calculations of its probability.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems