Samir Morad , Christian Ulbricht , Paul Harkin , Justin Chan , Kim Parker , Ravi Vaidyanathan
{"title":"Active constraint control for the surgical robotic platform with concentric connector joints","authors":"Samir Morad , Christian Ulbricht , Paul Harkin , Justin Chan , Kim Parker , Ravi Vaidyanathan","doi":"10.1016/j.medengphy.2024.104236","DOIUrl":null,"url":null,"abstract":"<div><p>Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350453324001371/pdfft?md5=a624afbf4e8e10bc7ca925b318172c11&pid=1-s2.0-S1350453324001371-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.