Phase noise reduction in digital holographic microscopy based on adaptive filtering and total directional variation

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Zhao Ma , Jiale Long , Yi Ding , Jianmin Zhang , Jiangtao Xi , Yingrong Li , Yuyang Peng
{"title":"Phase noise reduction in digital holographic microscopy based on adaptive filtering and total directional variation","authors":"Zhao Ma ,&nbsp;Jiale Long ,&nbsp;Yi Ding ,&nbsp;Jianmin Zhang ,&nbsp;Jiangtao Xi ,&nbsp;Yingrong Li ,&nbsp;Yuyang Peng","doi":"10.1016/j.optlastec.2024.111807","DOIUrl":null,"url":null,"abstract":"<div><p>Digital holographic microscopy (DHM) has been widely used in the biological and medical fields as an important tool for observing microstructures. However, the imaging quality of DHM is impacted by various random noises introduced by the light source and optical components as well as the experimental environment. In order to reduce the effect of random noise, this paper proposes an adaptive filtering and total directional variation (TDV) method based on the change of principal component analysis (PCA) transform domain to reduce the phase noise. The performance of the proposed method is tested by experiments, showing that it can effectively reduce the random noise of the phase image and retain details of the image well.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111807"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012659","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital holographic microscopy (DHM) has been widely used in the biological and medical fields as an important tool for observing microstructures. However, the imaging quality of DHM is impacted by various random noises introduced by the light source and optical components as well as the experimental environment. In order to reduce the effect of random noise, this paper proposes an adaptive filtering and total directional variation (TDV) method based on the change of principal component analysis (PCA) transform domain to reduce the phase noise. The performance of the proposed method is tested by experiments, showing that it can effectively reduce the random noise of the phase image and retain details of the image well.

基于自适应滤波和总方向变化的数字全息显微镜相位噪声降低技术
数字全息显微镜(DHM)作为观察微观结构的重要工具,已广泛应用于生物和医学领域。然而,光源和光学元件以及实验环境带来的各种随机噪声会影响 DHM 的成像质量。为了降低随机噪声的影响,本文提出了一种基于主成分分析(PCA)变换域变化的自适应滤波和总方向变化(TDV)方法,以降低相位噪声。实验测试了所提方法的性能,结果表明它能有效降低相位图像的随机噪声,并很好地保留了图像的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信