An interpretable formula for lattice thermal conductivity of crystals

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaoying Wang , Guoyu Shu , Guimei Zhu , Jian-Sheng Wang , Jun Sun , Xiangdong Ding , Baowen Li , Zhibin Gao
{"title":"An interpretable formula for lattice thermal conductivity of crystals","authors":"Xiaoying Wang ,&nbsp;Guoyu Shu ,&nbsp;Guimei Zhu ,&nbsp;Jian-Sheng Wang ,&nbsp;Jun Sun ,&nbsp;Xiangdong Ding ,&nbsp;Baowen Li ,&nbsp;Zhibin Gao","doi":"10.1016/j.mtphys.2024.101549","DOIUrl":null,"url":null,"abstract":"<div><p>Lattice thermal conductivity (<em>κ</em><sub><em>L</em></sub>) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining <em>κ</em><sub><em>L</em></sub> poses a considerable challenge. In this study, we introduce a formula that achieves high precision (mean relative error = 8.97 %) and provides fast predictions, taking less than 1 min, for <em>κ</em><sub><em>L</em></sub> across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts <em>κ</em><sub><em>L</em></sub> values for 4601 binary and 6995 ternary materials in the Materials Project database. Notably, we predict undiscovered high <em>κ</em><sub><em>L</em></sub> values for AlBN<sub>2</sub> (<em>κ</em><sub><em>L</em></sub> = 101 W m<sup>−1</sup> K<sup>−1</sup>) and the undetected low <em>κ</em><sub><em>L</em></sub> Cs<sub>2</sub>Se (<em>κ</em><sub><em>L</em></sub> = 0.98 W m<sup>−1</sup> K<sup>−1</sup>) at room temperature. This method for determining <em>κ</em><sub><em>L</em></sub> streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme <em>κ</em><sub><em>L</em></sub> values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Grüneisen parameter.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101549"},"PeriodicalIF":10.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lattice thermal conductivity (κL) is a crucial physical property of crystals with applications in thermal management, such as heat dissipation, insulation, and thermoelectric energy conversion. However, accurately and rapidly determining κL poses a considerable challenge. In this study, we introduce a formula that achieves high precision (mean relative error = 8.97 %) and provides fast predictions, taking less than 1 min, for κL across a wide range of inorganic binary and ternary materials. Our interpretable, dimensionally aligned and physical grounded formula forecasts κL values for 4601 binary and 6995 ternary materials in the Materials Project database. Notably, we predict undiscovered high κL values for AlBN2 (κL = 101 W m−1 K−1) and the undetected low κL Cs2Se (κL = 0.98 W m−1 K−1) at room temperature. This method for determining κL streamlines the traditionally time-consuming process associated with complex phonon physics. It provides insights into microscopic heat transport and facilitates the design and screening of materials with targeted and extreme κL values through the application of phonon engineering. Our findings offer opportunities for controlling and optimizing macroscopic transport properties of materials by engineering their bulk modulus, shear modulus, and Grüneisen parameter.

晶体晶格热导率的可解释公式
晶格热导率(κL)是晶体的一项重要物理特性,可应用于散热、绝缘和热电能量转换等热管理领域。然而,准确、快速地测定 κL 是一项相当大的挑战。在本研究中,我们介绍了一种公式,它能实现高精度(平均相对误差 = 8.97 %),并能在 1 分钟内快速预测各种无机二元和三元材料的 κL 值。我们的公式具有可解释性、尺寸对齐性和物理基础性,可预测材料项目数据库中 4601 种二元材料和 6995 种三元材料的 κL 值。值得注意的是,我们预测了 AlBN2 在室温下尚未发现的高 κL 值(κL = 101 W m-1 K-1)和尚未发现的低 κL Cs2Se(κL = 0.98 W m-1 K-1)。这种确定 κL 的方法简化了与复杂声子物理学相关的传统耗时过程。它提供了对微观热传输的深入了解,并通过声子工程的应用,促进了具有目标和极端 κL 值的材料的设计和筛选。我们的研究结果为通过对材料的体积模量、剪切模量和格鲁尼森参数进行工程设计来控制和优化材料的宏观传输特性提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信