Averaging fractional Fourier domains for background noise removal applied to digital lensless holographic microscopy

IF 3.1 3区 物理与天体物理 Q2 Engineering
Optik Pub Date : 2024-09-12 DOI:10.1016/j.ijleo.2024.172035
{"title":"Averaging fractional Fourier domains for background noise removal applied to digital lensless holographic microscopy","authors":"","doi":"10.1016/j.ijleo.2024.172035","DOIUrl":null,"url":null,"abstract":"<div><p>A background noise removal method based on averaging fractional Fourier domains is presented. The method is applied to Digital Lensless Holographic Microscopy (DLHM) intensity reconstructions, where the background is perturbed by the weak yet detrimental presence of information of the twin image. A set of fractional Fourier domains of a DLHM intensity reconstruction is computed and thereafter averaged leading to a sensible reduction of the background noise and, therefore, an increase in the overall contrast of the resulting image. The maximum reach of the fractional rotations used in the method is determined by measuring the spatial resolution in a regular star test target such that the spatial resolution is kept within the span of interest for a given application. The set of images to be averaged is composed of fractional rotations of the original intensity reconstruction that are smaller than the previously determined maximum reach. The number of fractional rotations that are finally averaged is determined by the sought increase in the contrast of the resulting image. Experimental samples of micrometer-sized objects and an intricate biological specimen have been used to validate the proposal.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004340","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A background noise removal method based on averaging fractional Fourier domains is presented. The method is applied to Digital Lensless Holographic Microscopy (DLHM) intensity reconstructions, where the background is perturbed by the weak yet detrimental presence of information of the twin image. A set of fractional Fourier domains of a DLHM intensity reconstruction is computed and thereafter averaged leading to a sensible reduction of the background noise and, therefore, an increase in the overall contrast of the resulting image. The maximum reach of the fractional rotations used in the method is determined by measuring the spatial resolution in a regular star test target such that the spatial resolution is kept within the span of interest for a given application. The set of images to be averaged is composed of fractional rotations of the original intensity reconstruction that are smaller than the previously determined maximum reach. The number of fractional rotations that are finally averaged is determined by the sought increase in the contrast of the resulting image. Experimental samples of micrometer-sized objects and an intricate biological specimen have been used to validate the proposal.

应用于数字无透镜全息显微镜的去除背景噪声的平均分数傅立叶域
本文介绍了一种基于分数傅里叶域平均的背景噪声去除方法。该方法适用于数字无透镜全息显微镜(DLHM)的强度重建,在这种情况下,背景会受到孪生图像信息微弱但有害的干扰。DLHM 强度重建的一组分数傅里叶域被计算出来,然后进行平均,从而显著降低了背景噪音,并因此提高了所得图像的整体对比度。该方法中使用的分数旋转的最大范围是通过测量常规星形测试目标的空间分辨率来确定的,从而使空间分辨率保持在特定应用所需的范围内。待平均的图像集由小于先前确定的最大范围的原始强度重建的分数旋转组成。最终平均化的分数旋转数取决于所生成图像对比度的增加。微米大小物体和复杂生物样本的实验样本已用于验证该建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信