{"title":"Carrier modulation and effective passivation of tin oxide thin-film transistors by organic surface doping","authors":"","doi":"10.1016/j.sse.2024.109005","DOIUrl":null,"url":null,"abstract":"<div><p>Doping is a useful technique for metal oxide thin-film transistors (TFTs) to adjust the threshold voltage and charge carrier density. However, a notable drawback is the disruption of the microstructure caused by doping crystalline lattice, leading to a partial decrease in charge carrier mobility. In this work, we suggest a surface doping technique that modifies the carrier concentration and passivates the device surface while preserving the channel layer lattice structure through the use of organic dopant molecules. It is shown that tin oxide (SnO<sub>2</sub>) TFTs doped in this manner typically exhibit improved electrical characteristics, particularly greater mobility and a noticeably lower threshold voltage, without negatively affecting the devices on/off current ratio. Furthermore, compared to pristine devices, bias stress stability and long-term durability are also enhanced. These findings suggest that surface doping may find use in high-performance oxide semiconductor devices and circuits.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001540","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Doping is a useful technique for metal oxide thin-film transistors (TFTs) to adjust the threshold voltage and charge carrier density. However, a notable drawback is the disruption of the microstructure caused by doping crystalline lattice, leading to a partial decrease in charge carrier mobility. In this work, we suggest a surface doping technique that modifies the carrier concentration and passivates the device surface while preserving the channel layer lattice structure through the use of organic dopant molecules. It is shown that tin oxide (SnO2) TFTs doped in this manner typically exhibit improved electrical characteristics, particularly greater mobility and a noticeably lower threshold voltage, without negatively affecting the devices on/off current ratio. Furthermore, compared to pristine devices, bias stress stability and long-term durability are also enhanced. These findings suggest that surface doping may find use in high-performance oxide semiconductor devices and circuits.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.