Na Shou , Christopher Rensing , Qiwen Lin , Wenqian Xu , Keyi Fu , Xuefeng Yuan , Dandan Wu , Fan Wang , Yanzhong Li , Zunji Shi
{"title":"Acesulfame potassium induces hepatic inflammation and fatty acids accumulation via disturbance of carnitine metabolism and gut microbiota","authors":"Na Shou , Christopher Rensing , Qiwen Lin , Wenqian Xu , Keyi Fu , Xuefeng Yuan , Dandan Wu , Fan Wang , Yanzhong Li , Zunji Shi","doi":"10.1016/j.fbio.2024.105101","DOIUrl":null,"url":null,"abstract":"<div><p>The controversy surrounding the impact of acesulfame potassium (Ace-K) on metabolic health has been growing. Here, male C57BL/6 mice were given Ace-K for 11 weeks (sterile water as the control group, 40 mg/kg body weight as the low dose group, 120 mg/kg as the high dose group), subsequently gut microbiome and targeted metabolomics were conducted to evaluate the effect of Ace-K on host health. Gut microbiota was perturbed by Ace-K, as evidenced by the down-regulation of beneficial bacteria and the increased abundance of <em>Collinsella</em> associated with inflammation. Fatty acids metabolism was altered by Ace-K, as evidenced by elevated long chain fatty acids (LCFAs) in liver and serum. Notably, the reduction of related genes and proteins correlated to carnitine metabolism and hepatic carnitine metabolites by Ace-K led to a reduction in the <em>β</em>-oxidation of LCFAs, ultimately causing the accumulation of LCFAs. These findings uncovered new perspectives on Ace-K-induced hepatic inflammation and fatty acids accumulation.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":"62 ","pages":"Article 105101"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429224015311","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The controversy surrounding the impact of acesulfame potassium (Ace-K) on metabolic health has been growing. Here, male C57BL/6 mice were given Ace-K for 11 weeks (sterile water as the control group, 40 mg/kg body weight as the low dose group, 120 mg/kg as the high dose group), subsequently gut microbiome and targeted metabolomics were conducted to evaluate the effect of Ace-K on host health. Gut microbiota was perturbed by Ace-K, as evidenced by the down-regulation of beneficial bacteria and the increased abundance of Collinsella associated with inflammation. Fatty acids metabolism was altered by Ace-K, as evidenced by elevated long chain fatty acids (LCFAs) in liver and serum. Notably, the reduction of related genes and proteins correlated to carnitine metabolism and hepatic carnitine metabolites by Ace-K led to a reduction in the β-oxidation of LCFAs, ultimately causing the accumulation of LCFAs. These findings uncovered new perspectives on Ace-K-induced hepatic inflammation and fatty acids accumulation.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.