{"title":"Vanillin-crosslinked gelatin-polyvinyl alcohol aerogels: Improved physicochemical properties and antimicrobial activity","authors":"","doi":"10.1016/j.fbio.2024.105084","DOIUrl":null,"url":null,"abstract":"<div><p>Crosslinking is a promising way to fabricate high-performance aerogels. In this study, vanillin (Van) crosslinked gelatin–polyvinyl alcohol (Gel−PVA) aerogels were prepared by vacuum freeze-drying method. The effects of different addition levels of Van on FTIR spectra, microstructures and physicochemical properties including water stability, mechanical properties, thermal stability and thermal insulation properties of aerogels were characterized, and antimicrobial activity of aerogels were validated. The results showed that Van exerted its crosslinking function through Schiff base bonding with Gel and hydrogen bonding with Gel and PVA. Although Van addition caused a slight decline in the thermal insulation performance and the obvious increase in pore diameter of aerogels, moderate Van crosslinking contributed to water stability, mechanical properties and thermal stability of aerogels. Besides, Van crosslinked Gel−PVA aerogel could effectively inhibit the growth of <em>E. coli</em> and <em>B. cinerea</em>. This suggests that the aerogel has promising applications in antimicrobial food packaging.</p></div>","PeriodicalId":12409,"journal":{"name":"Food Bioscience","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioscience","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212429224015141","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Crosslinking is a promising way to fabricate high-performance aerogels. In this study, vanillin (Van) crosslinked gelatin–polyvinyl alcohol (Gel−PVA) aerogels were prepared by vacuum freeze-drying method. The effects of different addition levels of Van on FTIR spectra, microstructures and physicochemical properties including water stability, mechanical properties, thermal stability and thermal insulation properties of aerogels were characterized, and antimicrobial activity of aerogels were validated. The results showed that Van exerted its crosslinking function through Schiff base bonding with Gel and hydrogen bonding with Gel and PVA. Although Van addition caused a slight decline in the thermal insulation performance and the obvious increase in pore diameter of aerogels, moderate Van crosslinking contributed to water stability, mechanical properties and thermal stability of aerogels. Besides, Van crosslinked Gel−PVA aerogel could effectively inhibit the growth of E. coli and B. cinerea. This suggests that the aerogel has promising applications in antimicrobial food packaging.
Food BioscienceBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
6.40
自引率
5.80%
发文量
671
审稿时长
27 days
期刊介绍:
Food Bioscience is a peer-reviewed journal that aims to provide a forum for recent developments in the field of bio-related food research. The journal focuses on both fundamental and applied research worldwide, with special attention to ethnic and cultural aspects of food bioresearch.