Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yifeng Tian, Soumendu Bagchi, Liam Myhill, Giacomo Po, Enrique Martinez, Yen Ting Lin, Nithin Mathew, Danny Perez
{"title":"Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning","authors":"Yifeng Tian, Soumendu Bagchi, Liam Myhill, Giacomo Po, Enrique Martinez, Yen Ting Lin, Nithin Mathew, Danny Perez","doi":"10.1038/s41524-024-01394-4","DOIUrl":null,"url":null,"abstract":"<p>Dislocation mobility, which dictates the response of dislocations to an applied stress, is a fundamental property of crystalline materials that governs the evolution of plastic deformation. Traditional approaches for deriving mobility laws rely on phenomenological models of the underlying physics, whose free parameters are in turn fitted to a small number of intuition-driven atomic scale simulations under varying conditions of temperature and stress. This tedious and time-consuming approach becomes particularly cumbersome for materials with complex dependencies on stress, temperature, and local environment, such as body-centered cubic crystals (BCC) metals and alloys. In this paper, we present a novel, uncertainty quantification-driven active learning paradigm for learning dislocation mobility laws from automated high-throughput large-scale molecular dynamics simulations, using Graph Neural Networks (GNN) with a physics-informed architecture. We demonstrate that this Physics-informed Graph Neural Network (PI-GNN) framework captures the underlying physics more accurately compared to existing phenomenological mobility laws in BCC metals.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"32 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01394-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dislocation mobility, which dictates the response of dislocations to an applied stress, is a fundamental property of crystalline materials that governs the evolution of plastic deformation. Traditional approaches for deriving mobility laws rely on phenomenological models of the underlying physics, whose free parameters are in turn fitted to a small number of intuition-driven atomic scale simulations under varying conditions of temperature and stress. This tedious and time-consuming approach becomes particularly cumbersome for materials with complex dependencies on stress, temperature, and local environment, such as body-centered cubic crystals (BCC) metals and alloys. In this paper, we present a novel, uncertainty quantification-driven active learning paradigm for learning dislocation mobility laws from automated high-throughput large-scale molecular dynamics simulations, using Graph Neural Networks (GNN) with a physics-informed architecture. We demonstrate that this Physics-informed Graph Neural Network (PI-GNN) framework captures the underlying physics more accurately compared to existing phenomenological mobility laws in BCC metals.

Abstract Image

利用物理信息机器学习,从原子统计学中建立数据驱动的位错流动性模型
位错迁移率决定了位错对外加应力的反应,是晶体材料的基本特性,它制约着塑性变形的演变。推导位错迁移率规律的传统方法依赖于基础物理学的现象学模型,其自由参数反过来又与在不同温度和应力条件下进行的少量直觉驱动的原子尺度模拟相匹配。对于应力、温度和局部环境具有复杂依赖性的材料,例如体心立方晶体(BCC)金属和合金,这种繁琐耗时的方法变得尤为麻烦。在本文中,我们提出了一种新颖的、不确定性量化驱动的主动学习范式,利用具有物理信息架构的图神经网络(GNN),从自动化高通量大规模分子动力学模拟中学习位错移动规律。我们证明,与 BCC 金属中现有的现象学迁移率规律相比,这种物理信息图神经网络(PI-GNN)框架能更准确地捕捉底层物理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信