Junying Li , Lichun Wang , Xinru Xu , Kunhao Lei , Bo Tang , Hao Dai , Jiaxin Zhang , Jialing Jian , Yuting Ye , Hui Ma , Jianghong Wu , Ye Luo , Zequn Chen , Yuexin Yin , Chunlei Sun , Daming Zhang , Lan Li , Hongtao Lin
{"title":"Local laser annealing for amorphous/polycrystalline silicon hybrid photonics on CMOS","authors":"Junying Li , Lichun Wang , Xinru Xu , Kunhao Lei , Bo Tang , Hao Dai , Jiaxin Zhang , Jialing Jian , Yuting Ye , Hui Ma , Jianghong Wu , Ye Luo , Zequn Chen , Yuexin Yin , Chunlei Sun , Daming Zhang , Lan Li , Hongtao Lin","doi":"10.1016/j.optlastec.2024.111799","DOIUrl":null,"url":null,"abstract":"<div><p>Deposited photonics represents a promising avenue for monolithic back-end integration on CMOS, yet encounters challenges in simultaneously enhancing waveguide loss and modulation dynamics. In this paper, a novel amorphous/polycrystalline hybrid scheme for deposited silicon photonics on CMOS was proposed, which utilizes mask-assisted local laser annealing to crystallize the active region of low-loss amorphous silicon (α-Si) PICs only into high-mobility polycrystalline silicon (poly-Si). The feasibility of key techniques such as laser annealing of α-Si thin films, laser activation of doping ions, and mask-assisted local laser annealing of photonic devices is validated. A comparative study between excimer laser annealing and solid-state laser annealing of α-Si is conducted, examining the impacts of pre-dehydrogenation, doping, etching depth, laser pulse energy density, and pulse number. During mask-assisted laser annealing the necessity of a buffer layer between the mask and the α-Si to prevent metal contamination is highlighted. The mask-assisted local laser annealing technique effectively mitigates the optical loss increase by ∼140 dB/cm typically associated with laser crystallization in a α-Si racetrack resonator and reduces the coupling loss in grating couplers by ∼8 dB/pair. Mask-assisted laser annealing not only facilitates high-yield wafer-level active deposited photonics but also allows for leveraging the strengths of both α-Si and poly-Si within a single photonic integrated circuit. This work provides technological insights and valuable guidance for the development of high-performance deposited silicon photonics.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003039922401257X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deposited photonics represents a promising avenue for monolithic back-end integration on CMOS, yet encounters challenges in simultaneously enhancing waveguide loss and modulation dynamics. In this paper, a novel amorphous/polycrystalline hybrid scheme for deposited silicon photonics on CMOS was proposed, which utilizes mask-assisted local laser annealing to crystallize the active region of low-loss amorphous silicon (α-Si) PICs only into high-mobility polycrystalline silicon (poly-Si). The feasibility of key techniques such as laser annealing of α-Si thin films, laser activation of doping ions, and mask-assisted local laser annealing of photonic devices is validated. A comparative study between excimer laser annealing and solid-state laser annealing of α-Si is conducted, examining the impacts of pre-dehydrogenation, doping, etching depth, laser pulse energy density, and pulse number. During mask-assisted laser annealing the necessity of a buffer layer between the mask and the α-Si to prevent metal contamination is highlighted. The mask-assisted local laser annealing technique effectively mitigates the optical loss increase by ∼140 dB/cm typically associated with laser crystallization in a α-Si racetrack resonator and reduces the coupling loss in grating couplers by ∼8 dB/pair. Mask-assisted laser annealing not only facilitates high-yield wafer-level active deposited photonics but also allows for leveraging the strengths of both α-Si and poly-Si within a single photonic integrated circuit. This work provides technological insights and valuable guidance for the development of high-performance deposited silicon photonics.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.