Effects on the algebraic connectivity of weighted graphs under edge rotations

IF 1 3区 数学 Q1 MATHEMATICS
Xinzhuang Chen , Shenggui Zhang , Shanshan Gao , Xiaodi Song
{"title":"Effects on the algebraic connectivity of weighted graphs under edge rotations","authors":"Xinzhuang Chen ,&nbsp;Shenggui Zhang ,&nbsp;Shanshan Gao ,&nbsp;Xiaodi Song","doi":"10.1016/j.laa.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>For a weighted graph <em>G</em>, the rotation of an edge <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> from <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> to a vertex <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is defined as follows: delete the edge <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, set <span><math><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> as <span><math><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>+</mo><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> if <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is an edge of <em>G</em>; otherwise, add a new edge <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and set <span><math><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>=</mo><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>, where <span><math><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> and <span><math><mi>w</mi><mo>(</mo><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> are the weights of the edges <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><mi>u</mi><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, respectively. In this paper, effects on the algebraic connectivity of weighted graphs under edge rotations are studied. For a weighted graph, a sufficient condition for an edge rotation to reduce its algebraic connectivity and a necessary condition for an edge rotation to improve its algebraic connectivity are proposed based on Fiedler vectors of the graph. As applications, we show that, by using a series of edge rotations, a pair of pendent paths (a pendent tree) of a weighted graph can be transformed into one pendent path (pendent edges attached at a common vertex) of the graph with the algebraic connectivity decreasing (increasing) monotonically. These results extend previous findings of reducing the algebraic connectivity of unweighted graphs by using edge rotations.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"703 ","pages":"Pages 289-301"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003720","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a weighted graph G, the rotation of an edge uv1 from v1 to a vertex v2 is defined as follows: delete the edge uv1, set w(uv2) as w(uv1)+w(uv2) if uv2 is an edge of G; otherwise, add a new edge uv2 and set w(uv2)=w(uv1), where w(uv1) and w(uv2) are the weights of the edges uv1 and uv2, respectively. In this paper, effects on the algebraic connectivity of weighted graphs under edge rotations are studied. For a weighted graph, a sufficient condition for an edge rotation to reduce its algebraic connectivity and a necessary condition for an edge rotation to improve its algebraic connectivity are proposed based on Fiedler vectors of the graph. As applications, we show that, by using a series of edge rotations, a pair of pendent paths (a pendent tree) of a weighted graph can be transformed into one pendent path (pendent edges attached at a common vertex) of the graph with the algebraic connectivity decreasing (increasing) monotonically. These results extend previous findings of reducing the algebraic connectivity of unweighted graphs by using edge rotations.

边旋转对加权图代数连通性的影响
对于加权图 G,边 uv1 从 v1 到顶点 v2 的旋转定义如下:删除边 uv1,如果 uv2 是 G 的一条边,则设置 w(uv2) 为 w(uv1)+w(uv2);否则,添加一条新边 uv2,并设置 w(uv2)=w(uv1),其中 w(uv1) 和 w(uv2) 分别是边 uv1 和 uv2 的权重。本文研究了边旋转对加权图代数连通性的影响。对于加权图,根据图的费德勒向量,提出了边旋转降低其代数连通性的充分条件和边旋转提高其代数连通性的必要条件。作为应用,我们证明了通过使用一系列边旋转,加权图的一对垂径(一棵垂树)可以转化为图的一条垂径(连接在共同顶点的垂边),其代数连通性单调递减(递增)。这些结果扩展了之前利用边旋转降低无权图代数连通性的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信