Temperature-Dependent Electrical Characteristics and Low-Frequency Noise Analysis of AlGaN/GaN HEMTs

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qiang Chen;Y. Q. Chen;Chang Liu;Zhiyuan He;Yuan Chen;K. W. Geng;Y. J. He;W. Y. Chen
{"title":"Temperature-Dependent Electrical Characteristics and Low-Frequency Noise Analysis of AlGaN/GaN HEMTs","authors":"Qiang Chen;Y. Q. Chen;Chang Liu;Zhiyuan He;Yuan Chen;K. W. Geng;Y. J. He;W. Y. Chen","doi":"10.1109/JEDS.2024.3447022","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the electrical characteristics of AlGaN/GaN HEMTs at the lowest temperature of 20 K. The measurement results indicate that the output current of the device decreases significantly with increasing temperature at temperature ranging from 40 K to 260 K, and the saturation drain current decreases by 19%. The gate leakage current rises slightly when the temperature increases. However, both the transfer and C-V characteristics indicate that the threshold voltage shift slightly in a negative direction as the temperature rises. In order to determine the physical mechanism of electrical characteristics change, the low-frequency noise (LFN) characteristics at different temperatures were measured and the density of traps was extracted. Finally, we consider that there are two competing mechanisms affecting the electrical characteristics of devices. The trap density reduction caused by temperature rise leads to threshold voltage’s negative shift, while the drop of 2DEG mobility is the main reason for the decrease of output current.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10643171/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the electrical characteristics of AlGaN/GaN HEMTs at the lowest temperature of 20 K. The measurement results indicate that the output current of the device decreases significantly with increasing temperature at temperature ranging from 40 K to 260 K, and the saturation drain current decreases by 19%. The gate leakage current rises slightly when the temperature increases. However, both the transfer and C-V characteristics indicate that the threshold voltage shift slightly in a negative direction as the temperature rises. In order to determine the physical mechanism of electrical characteristics change, the low-frequency noise (LFN) characteristics at different temperatures were measured and the density of traps was extracted. Finally, we consider that there are two competing mechanisms affecting the electrical characteristics of devices. The trap density reduction caused by temperature rise leads to threshold voltage’s negative shift, while the drop of 2DEG mobility is the main reason for the decrease of output current.
AlGaN/GaN HEMT 随温度变化的电气特性和低频噪声分析
测量结果表明,在 40 K 至 260 K 的温度范围内,器件的输出电流随着温度的升高而显著减小,饱和漏极电流减小了 19%。温度升高时,栅极漏电流略有上升。然而,转移特性和 C-V 特性都表明,随着温度升高,阈值电压略微向负方向移动。为了确定电气特性变化的物理机制,我们测量了不同温度下的低频噪声(LFN)特性,并提取了陷阱密度。最后,我们认为有两种相互竞争的机制影响着器件的电气特性。温度升高引起的陷阱密度降低导致阈值电压负移,而二维电子元件迁移率下降则是输出电流降低的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信