Hybrid p-GaN/MIS Gate HEMT Suppressing Drain-Induced Dynamic Threshold Voltage Instability

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chen Wang;Jinyan Wang;Xin Wang;Ziheng Liu;Jiayin He;Ju Gao;Chengkang Ao;Maojun Wang;Jin Wei
{"title":"Hybrid p-GaN/MIS Gate HEMT Suppressing Drain-Induced Dynamic Threshold Voltage Instability","authors":"Chen Wang;Jinyan Wang;Xin Wang;Ziheng Liu;Jiayin He;Ju Gao;Chengkang Ao;Maojun Wang;Jin Wei","doi":"10.1109/LED.2024.3448362","DOIUrl":null,"url":null,"abstract":"This letter demonstrates a hybrid p-GaN/MIS gate HEMT (HG-HEMT) to suppress the drain-induced dynamic threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula>\n instability. By implementing a depletion-mode (D-mode) MIS gate adjacent to Schottky-type p-GaN gate, the drain-induced bidirectional shift of dynamic \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n is significantly reduced. The fabricated HG-HEMT exhibits decent performances compared to the conventional Schottky-type p-GaN gate HEMT (Conv-HEMT), with saturation current (\n<inline-formula> <tex-math>${I}_{\\text {D, {sat}}}\\text {)}$ </tex-math></inline-formula>\n of 345 mA/mm, on-resistance (\n<inline-formula> <tex-math>${R}_{\\text {ON}}\\text {)}$ </tex-math></inline-formula>\n of \n<inline-formula> <tex-math>$13.2~\\Omega \\cdot $ </tex-math></inline-formula>\n mm, and hard breakdown voltage (\n<italic>BV</i>\n) of 1315 V, which are similar to the Conv-HEMT. The HG-HEMT demonstrates significantly improved dynamic \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n stability under drain bias, with a negligible dynamic \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n shift at on-state drain bias of 50 V, and a small positive dynamic \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n shift of +0.05 V after off-state drain bias of 400 V. As a comparison, \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n shifts of the Conv-HEMT are −0.28 V and +0.42 V, respectively. The improved dynamic \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n stability of the HG-HEMT is owing to a D-mode MIS-gate region that shields the interplay between drain and the p-GaN region. The proposed HG-HEMT paves the way for highly stable GaN power electronics applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1732-1735"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644097/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter demonstrates a hybrid p-GaN/MIS gate HEMT (HG-HEMT) to suppress the drain-induced dynamic threshold voltage ( ${V}_{\text {th}}\text {)}$ instability. By implementing a depletion-mode (D-mode) MIS gate adjacent to Schottky-type p-GaN gate, the drain-induced bidirectional shift of dynamic ${V}_{\text {th}}$ is significantly reduced. The fabricated HG-HEMT exhibits decent performances compared to the conventional Schottky-type p-GaN gate HEMT (Conv-HEMT), with saturation current ( ${I}_{\text {D, {sat}}}\text {)}$ of 345 mA/mm, on-resistance ( ${R}_{\text {ON}}\text {)}$ of $13.2~\Omega \cdot $ mm, and hard breakdown voltage ( BV ) of 1315 V, which are similar to the Conv-HEMT. The HG-HEMT demonstrates significantly improved dynamic ${V}_{\text {th}}$ stability under drain bias, with a negligible dynamic ${V}_{\text {th}}$ shift at on-state drain bias of 50 V, and a small positive dynamic ${V}_{\text {th}}$ shift of +0.05 V after off-state drain bias of 400 V. As a comparison, ${V}_{\text {th}}$ shifts of the Conv-HEMT are −0.28 V and +0.42 V, respectively. The improved dynamic ${V}_{\text {th}}$ stability of the HG-HEMT is owing to a D-mode MIS-gate region that shields the interplay between drain and the p-GaN region. The proposed HG-HEMT paves the way for highly stable GaN power electronics applications.
抑制漏极引起的动态阈值电压不稳定性的 p-GaN/MIS 门混合 HEMT
这封信展示了一种混合 p-GaN/MIS 栅极 HEMT(HG-HEMT),用于抑制漏极引起的动态阈值电压(${V}_{text {th}}\text {)}$不稳定性。通过在肖特基型 p-GaN 栅极旁边实施一个耗尽模式(D-mode)MIS 栅极,漏极引起的动态 ${V}_{text {th}}$ 双向偏移显著降低。与传统的肖特基型 p-GaN 栅极 HEMT(Conv-HEMT)相比,制备的 HG-HEMT 具有良好的性能,其饱和电流(${I}_{text {D, {sat}}}\text {)}$为 345 mA/mm,导通电阻(${R}_{text {ON}}\text {)}$为 13.2~\Omega \cdot $ mm,硬击穿电压(BV)为 1315 V,与 Conv-HEMT 相似。HG-HEMT 显著提高了漏极偏压下的动态 ${V}_{text {th}}$ 稳定性,在通态漏极偏压为 50 V 时,动态 ${V}_{text {th}}$ 漂移可以忽略不计,而在离态漏极偏压为 400 V 时,动态 ${V}_{text {th}}$ 漂移为 +0.05 V。相比之下,Conv-HEMT 的 ${V}_{text {th}}$ 漂移分别为 -0.28 V 和 +0.42 V。HG-HEMT 动态 ${V}_{text {th}}$ 稳定性的提高归功于 D 模式 MIS 栅极区域,它屏蔽了漏极和 p-GaN 区域之间的相互作用。所提出的 HG-HEMT 为高度稳定的 GaN 功率电子应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信