Nilesh Pandey;Yogesh Singh Chauhan;Leonard F. Register;Sanjay K. Banerjee
{"title":"Multi-Domain Dynamics and Ultimate Scalability of CMOS-Compatible FeFETs","authors":"Nilesh Pandey;Yogesh Singh Chauhan;Leonard F. Register;Sanjay K. Banerjee","doi":"10.1109/LED.2024.3454638","DOIUrl":null,"url":null,"abstract":"Recent research on CMOS-compatible FETs aims at aggressive scaling, targeting advanced performance nodes (7 nm - 14 nm), with the ultimate scalability limit posed by direct source-to-drain tunneling (DSDT). This letter investigates the impact of multi-domain dynamics in the ferroelectric gate dielectric on FeFET scalability. Coupled solutions of 2-D Poisson’s equation with the ferroelectric’s 2-D thermodynamics model (depolarizing energy + gradient energy + free energy) are the basis of a phase-field model. Varying ferroelectric and dielectric layer thicknesses can be used to engineer domain density. Minimal DSDT, maximum ON/OFF current ratio, and maximum memory window (MW) are possible when a single domain wall (domain density = 2) is located near the mid-channel. Additional domain walls increase DSDT. Furthermore, the drain electric field shifts the domain wall towards the source, increasing DSDT. Spatial gradient in polarization drastically impacts DSDT, with hard domain walls exhibiting lower DSDT due to increased polarization gradient. Our study predicts an optimal physical gate length of 12 nm (domain density = 2) with I\n<inline-formula> <tex-math>$_{\\textit {ON}}$ </tex-math></inline-formula>\n/I\n<inline-formula> <tex-math>$_{\\textit {OFF}}~\\sim ~{1}\\times {10} ^{{6}}$ </tex-math></inline-formula>\n and subthreshold slope \n<inline-formula> <tex-math>$\\sim ~100$ </tex-math></inline-formula>\n mV/dec.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2098-2101"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10666789/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research on CMOS-compatible FETs aims at aggressive scaling, targeting advanced performance nodes (7 nm - 14 nm), with the ultimate scalability limit posed by direct source-to-drain tunneling (DSDT). This letter investigates the impact of multi-domain dynamics in the ferroelectric gate dielectric on FeFET scalability. Coupled solutions of 2-D Poisson’s equation with the ferroelectric’s 2-D thermodynamics model (depolarizing energy + gradient energy + free energy) are the basis of a phase-field model. Varying ferroelectric and dielectric layer thicknesses can be used to engineer domain density. Minimal DSDT, maximum ON/OFF current ratio, and maximum memory window (MW) are possible when a single domain wall (domain density = 2) is located near the mid-channel. Additional domain walls increase DSDT. Furthermore, the drain electric field shifts the domain wall towards the source, increasing DSDT. Spatial gradient in polarization drastically impacts DSDT, with hard domain walls exhibiting lower DSDT due to increased polarization gradient. Our study predicts an optimal physical gate length of 12 nm (domain density = 2) with I
$_{\textit {ON}}$
/I
$_{\textit {OFF}}~\sim ~{1}\times {10} ^{{6}}$
and subthreshold slope
$\sim ~100$
mV/dec.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.