A Tunneling Light-Emitting Device With Ultra-Narrow Linewidth Emission at Room-Temperature

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanpeng Wu;Yixin Xiao;Kai Sun;Jianyang Xiao;Bowen Tian;Ding Wang;Danhao Wang;Zetian Mi
{"title":"A Tunneling Light-Emitting Device With Ultra-Narrow Linewidth Emission at Room-Temperature","authors":"Yuanpeng Wu;Yixin Xiao;Kai Sun;Jianyang Xiao;Bowen Tian;Ding Wang;Danhao Wang;Zetian Mi","doi":"10.1109/LED.2024.3456036","DOIUrl":null,"url":null,"abstract":"Light-emitting devices with ultra-narrow linewidth have important applications in high-precision measurements and emerging quantum technologies. Charge carriers in solid-state matrix often suffer from interactions with phonons, spin noise and drifting electric fields, which results in spectral diffusion and additional phase noise. Here we report an ultra-narrow linewidth (\n<inline-formula> <tex-math>$\\sim 76 \\; \\mu $ </tex-math></inline-formula>\neV) electroluminescence from molecular nitrogen species in the ambience at room temperature. Through detailed numerical calculation and experimental analysis, we show that the second positive system of nitrogen species can be excited by tunneling electrons field-emitted from a metal-insulator-semiconductor heterostructure on commercially available Si and GaN substrates. The tunneling light-emitting devices (TLED) feature an excellent scalability and devices with minimal lateral dimension of \n<inline-formula> <tex-math>$5 \\; \\mu $ </tex-math></inline-formula>\nm have been demonstrated. This work sheds light on the integration of atomic, molecular, and optical physics with the solid-state platform as well as novel quantum optoelectronics.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2138-2141"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675334/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Light-emitting devices with ultra-narrow linewidth have important applications in high-precision measurements and emerging quantum technologies. Charge carriers in solid-state matrix often suffer from interactions with phonons, spin noise and drifting electric fields, which results in spectral diffusion and additional phase noise. Here we report an ultra-narrow linewidth ( $\sim 76 \; \mu $ eV) electroluminescence from molecular nitrogen species in the ambience at room temperature. Through detailed numerical calculation and experimental analysis, we show that the second positive system of nitrogen species can be excited by tunneling electrons field-emitted from a metal-insulator-semiconductor heterostructure on commercially available Si and GaN substrates. The tunneling light-emitting devices (TLED) feature an excellent scalability and devices with minimal lateral dimension of $5 \; \mu $ m have been demonstrated. This work sheds light on the integration of atomic, molecular, and optical physics with the solid-state platform as well as novel quantum optoelectronics.
室温下超窄线宽发射的隧道发光器件
具有超窄线宽的发光器件在高精度测量和新兴量子技术中有着重要的应用。固态矩阵中的电荷载流子通常会受到声子、自旋噪声和漂移电场的相互作用,从而导致光谱扩散和额外的相位噪声。在这里,我们报告了分子氮在室温环境中发出的超窄线宽($\sim 76 \; \mu $ eV)电致发光。通过详细的数值计算和实验分析,我们发现氮分子的第二正向系统可以通过从商用硅和氮化镓衬底上的金属-绝缘体-半导体异质结构中发射的隧道电子激发。这种隧道发光器件(TLED)具有极佳的可扩展性,器件的最小横向尺寸为 5 \; \mu $ m。这项工作揭示了原子、分子和光学物理与固态平台以及新型量子光电子学的整合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信