Linker engineering of benzothiadiazole and its derivative-based covalent organic frameworks for efficient photocatalytic oxidative amine coupling and hydrogen peroxide generation†
IF 5.7 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao-Qin Han, Jia-Xin Guo, Lei Wang, Shuai Sun, Jie Lv, Xiaokang Sun, Hanlin Hu, Xiaoxi Huang and Xiao-Yuan Liu
{"title":"Linker engineering of benzothiadiazole and its derivative-based covalent organic frameworks for efficient photocatalytic oxidative amine coupling and hydrogen peroxide generation†","authors":"Chao-Qin Han, Jia-Xin Guo, Lei Wang, Shuai Sun, Jie Lv, Xiaokang Sun, Hanlin Hu, Xiaoxi Huang and Xiao-Yuan Liu","doi":"10.1039/D4TC02406K","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs) have recently gained recognition as highly effective photocatalysts for solar energy conversion, in which manipulation of the electronic structures of photocatalysts is crucial for optimizing their photocatalytic performances. In this study, four benzothiadiazole and its derivative-based COFs (HIAM-0007 to HIAM-0010) were rationally designed and synthesized, which show remarkable differences toward photocatalytic oxidative amine coupling and hydrogen peroxide generation. The benzothiadiazole-based COF exhibits efficient oxidative amine coupling with a yield of up to 99%, while the naphthothiadiazole-based COF shows the highest rate of 796 μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small> for photocatalytic hydrogen peroxide generation from air and water without additional reagents. This work underscores the variability in the activity of individual COFs across different photocatalytic reaction systems, demonstrating that the best performance is a combination of the electronic structures of COFs and the surrounding reaction environment.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02406k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Covalent organic frameworks (COFs) have recently gained recognition as highly effective photocatalysts for solar energy conversion, in which manipulation of the electronic structures of photocatalysts is crucial for optimizing their photocatalytic performances. In this study, four benzothiadiazole and its derivative-based COFs (HIAM-0007 to HIAM-0010) were rationally designed and synthesized, which show remarkable differences toward photocatalytic oxidative amine coupling and hydrogen peroxide generation. The benzothiadiazole-based COF exhibits efficient oxidative amine coupling with a yield of up to 99%, while the naphthothiadiazole-based COF shows the highest rate of 796 μmol g−1 h−1 for photocatalytic hydrogen peroxide generation from air and water without additional reagents. This work underscores the variability in the activity of individual COFs across different photocatalytic reaction systems, demonstrating that the best performance is a combination of the electronic structures of COFs and the surrounding reaction environment.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors