Van der Waals integration of phase-pure 2D perovskite sheets and GaAs nanowires for self-driven photodetector†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhi-Hong Zhang, Xiao-Bing Hou, Shang-Heng Li, Zhi-Peng Wei, Jin-Chao Wei, Peng Li and Shuang-Peng Wang
{"title":"Van der Waals integration of phase-pure 2D perovskite sheets and GaAs nanowires for self-driven photodetector†","authors":"Zhi-Hong Zhang, Xiao-Bing Hou, Shang-Heng Li, Zhi-Peng Wei, Jin-Chao Wei, Peng Li and Shuang-Peng Wang","doi":"10.1039/D4TC02994A","DOIUrl":null,"url":null,"abstract":"<p >Semiconductor heterostructures hold significant importance for exploring novel functional optoelectronic devices, but the chemical instability and soft lattice framework of perovskites significantly hinder the efficient heterogeneous integration with other perovskite or semiconductor materials. Herein, based on the large-area phase-pure 2D perovskite sheets, a BA<small><sub>2</sub></small>MA<small><sub>2</sub></small>Pb<small><sub>3</sub></small>I<small><sub>10</sub></small>/GaAs van der Waals (vdW) heterostructure has been successfully constructed. The favorable vdW contacts allow the device to be cut-off at forward bias with a remarkably low dark current of 1.94 pA. This endows the heterostructure device with excellent detection performance, achieving a linear dynamic range of 80.9 dB and a detectivity of 6.17 × 10<small><sup>10</sup></small> Jones. Additionally, the interfacial potential of the heterostructure enables the device to operate in a self-driven manner across broad spectral ranges from ultraviolet to near-infrared. Our study demonstrates efficient vdW integration based on perovskite and provides a new foundation for constructing perovskite vdW heterostructures.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/tc/d4tc02994a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02994a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconductor heterostructures hold significant importance for exploring novel functional optoelectronic devices, but the chemical instability and soft lattice framework of perovskites significantly hinder the efficient heterogeneous integration with other perovskite or semiconductor materials. Herein, based on the large-area phase-pure 2D perovskite sheets, a BA2MA2Pb3I10/GaAs van der Waals (vdW) heterostructure has been successfully constructed. The favorable vdW contacts allow the device to be cut-off at forward bias with a remarkably low dark current of 1.94 pA. This endows the heterostructure device with excellent detection performance, achieving a linear dynamic range of 80.9 dB and a detectivity of 6.17 × 1010 Jones. Additionally, the interfacial potential of the heterostructure enables the device to operate in a self-driven manner across broad spectral ranges from ultraviolet to near-infrared. Our study demonstrates efficient vdW integration based on perovskite and provides a new foundation for constructing perovskite vdW heterostructures.

Abstract Image

Abstract Image

用于自驱动光探测器的相纯二维包晶片与砷化镓纳米线的范德华集成
半导体异质结构对于探索新型功能光电器件具有重要意义,但包晶的化学不稳定性和软晶格框架极大地阻碍了与其他包晶或半导体材料的高效异质集成。本文基于大面积相纯二维包晶片,成功构建了 BA2MA2Pb3I10/GaAs 范德华(vdW)异质结构。良好的 vdW 接触使得该器件在正向偏压下能以 1.94 pA 的超低暗电流截止。这使得该异质结构器件具有出色的探测性能,线性动态范围达到 80.9 dB,探测率达到 6.17 × 1010 Jones。此外,异质结构的界面电位使器件能够在从紫外到近红外的宽光谱范围内以自驱动方式工作。我们的研究证明了基于包晶的高效 vdW 集成,并为构建包晶 vdW 异质结构奠定了新的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信