Symmetry-informed design of magnetoelectric coupling in the manganite perovskite CeBaMn2O6†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Struan Simpson, Cameron A. M. Scott, Fernando Pomiro, Jeremiah P. Tidey, Urmimala Dey, Fabio Orlandi, Pascal Manuel, Martin R. Lees, Zih-Mei Hong, Wei-tin Chen, Nicholas C. Bristowe and Mark S. Senn
{"title":"Symmetry-informed design of magnetoelectric coupling in the manganite perovskite CeBaMn2O6†","authors":"Struan Simpson, Cameron A. M. Scott, Fernando Pomiro, Jeremiah P. Tidey, Urmimala Dey, Fabio Orlandi, Pascal Manuel, Martin R. Lees, Zih-Mei Hong, Wei-tin Chen, Nicholas C. Bristowe and Mark S. Senn","doi":"10.1039/D4TC02743D","DOIUrl":null,"url":null,"abstract":"<p >Magnetoelectric multiferroics hold great promise for the development of new sustainable memory devices. However, practical applications of many existing multiferroic materials are infeasible due to the weak nature of the coupling between the magnetic and electrical orderings, meaning new magnetoelectric multiferroics featuring intrinsic coupling between their component orderings are sought instead. Here, we apply a symmetry-informed design approach to identify and realize the new manganite perovskite CeBaMn<small><sub>2</sub></small>O<small><sub>6</sub></small> in which magnetoelectric coupling can be achieved <em>via</em> an intermediary non-polar structural distortion. Through first-principles calculations, we demonstrate that our chosen prototype system contains the required ingredients to achieve the desired magnetoelectric coupling. Using high-pressure/high-temperature synthesis conditions, we have been able to synthesize the CeBaMn<small><sub>2</sub></small>O<small><sub>6</sub></small> perovskite system for the first time. Our subsequent neutron and electron diffraction measurements reveal that the desired symmetry-breaking ingredients exist in this system on a nanoscopic length scale, enabling magnetoelectric nanoregions to emerge within the material. Through this work, we showcase the potential of the new CeBaMn<small><sub>2</sub></small>O<small><sub>6</sub></small> perovskite material as a promising system in which to realize strong magnetoelectric coupling, highlighting the potential of our symmetry-informed design approach in the pursuit of new magnetoelectric multiferroics for next-generation memory devices.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/tc/d4tc02743d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02743d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetoelectric multiferroics hold great promise for the development of new sustainable memory devices. However, practical applications of many existing multiferroic materials are infeasible due to the weak nature of the coupling between the magnetic and electrical orderings, meaning new magnetoelectric multiferroics featuring intrinsic coupling between their component orderings are sought instead. Here, we apply a symmetry-informed design approach to identify and realize the new manganite perovskite CeBaMn2O6 in which magnetoelectric coupling can be achieved via an intermediary non-polar structural distortion. Through first-principles calculations, we demonstrate that our chosen prototype system contains the required ingredients to achieve the desired magnetoelectric coupling. Using high-pressure/high-temperature synthesis conditions, we have been able to synthesize the CeBaMn2O6 perovskite system for the first time. Our subsequent neutron and electron diffraction measurements reveal that the desired symmetry-breaking ingredients exist in this system on a nanoscopic length scale, enabling magnetoelectric nanoregions to emerge within the material. Through this work, we showcase the potential of the new CeBaMn2O6 perovskite material as a promising system in which to realize strong magnetoelectric coupling, highlighting the potential of our symmetry-informed design approach in the pursuit of new magnetoelectric multiferroics for next-generation memory devices.

Abstract Image

Abstract Image

锰酸盐包晶 CeBaMn2O6 中磁电耦合的对称性设计
磁电多铁氧体在开发新型可持续记忆设备方面大有可为。然而,由于磁有序和电有序之间的耦合性较弱,许多现有多铁氧体材料的实际应用并不可行,这意味着人们需要寻找具有其成分有序之间内在耦合性的新型磁电多铁氧体。在这里,我们采用对称性设计方法,确定并实现了新型锰酸盐包晶 CeBaMn2O6,其中的磁电耦合可通过中间的非极性结构畸变来实现。通过第一原理计算,我们证明了所选的原型体系包含实现理想磁电耦合所需的成分。利用高压/高温合成条件,我们首次合成了 CeBaMn2O6 包晶体系。我们随后进行的中子和电子衍射测量结果表明,该体系在纳米长度尺度上存在所需的对称性破坏成分,从而使材料内部出现了磁电纳米区域。通过这项工作,我们展示了新型 CeBaMn2O6 包晶材料作为实现强磁电耦合的有前途的体系的潜力,突出了我们以对称性为基础的设计方法在为下一代存储器件开发新型磁电多铁氧体方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信