Machine Learning-Based Universal Threshold Voltage Extraction of Transistors Using Convolutional Neural Networks

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hüsnü Murat Koçak;Jesse Davis;Michel Houssa;Ahmet Teoman Naskali;Jerome Mitard
{"title":"Machine Learning-Based Universal Threshold Voltage Extraction of Transistors Using Convolutional Neural Networks","authors":"Hüsnü Murat Koçak;Jesse Davis;Michel Houssa;Ahmet Teoman Naskali;Jerome Mitard","doi":"10.1109/TSM.2024.3450286","DOIUrl":null,"url":null,"abstract":"The threshold voltage \n<inline-formula> <tex-math>$(V_{th})$ </tex-math></inline-formula>\n enables us to measure the functionality of ultra-scaled field effect transistors (FETs) and plays a key role in the performance evaluation of devices. Although many \n<inline-formula> <tex-math>$V_{th}$ </tex-math></inline-formula>\n extraction methods exist and are in use in the industry, selecting an optimized and universal method is still difficult. Additionally, these methods often rely on expert validation, which increases the time cost for researchers to optimize the extraction process. In this work, we propose a universal and autonomous machine learning model, specifically a convolutional neural network based \n<inline-formula> <tex-math>$V_{th}$ </tex-math></inline-formula>\n extractor model. The novelty of this work lies in simultaneously processing gate, drain, source, and bulk currents combined with gate voltage to remove the dependency on setting boundaries for gate voltage. Additionally, the training dataset is composed of measurements coming from transistors of different technology nodes (Planar, MOSFET, FinFET, Gate-All-Around) to provide generalization. Our method produces significantly more accurate results than traditional ML algorithms by extracting \n<inline-formula> <tex-math>$V_{th}$ </tex-math></inline-formula>\n in 3mV mean absolute error rate and is verified with different performance metrics.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"615-619"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654342/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The threshold voltage $(V_{th})$ enables us to measure the functionality of ultra-scaled field effect transistors (FETs) and plays a key role in the performance evaluation of devices. Although many $V_{th}$ extraction methods exist and are in use in the industry, selecting an optimized and universal method is still difficult. Additionally, these methods often rely on expert validation, which increases the time cost for researchers to optimize the extraction process. In this work, we propose a universal and autonomous machine learning model, specifically a convolutional neural network based $V_{th}$ extractor model. The novelty of this work lies in simultaneously processing gate, drain, source, and bulk currents combined with gate voltage to remove the dependency on setting boundaries for gate voltage. Additionally, the training dataset is composed of measurements coming from transistors of different technology nodes (Planar, MOSFET, FinFET, Gate-All-Around) to provide generalization. Our method produces significantly more accurate results than traditional ML algorithms by extracting $V_{th}$ in 3mV mean absolute error rate and is verified with different performance metrics.
使用卷积神经网络提取基于机器学习的晶体管通用阈值电压
阈值电压 $(V_{th})$ 使我们能够测量超大规模场效应晶体管 (FET) 的功能,并在器件的性能评估中发挥着关键作用。尽管业界有许多 $V_{th}$ 提取方法,但要选择一种优化的通用方法仍然十分困难。此外,这些方法通常依赖于专家验证,这增加了研究人员优化提取过程的时间成本。在这项工作中,我们提出了一种通用的自主机器学习模型,特别是基于卷积神经网络的 $V_{th}$ 提取模型。这项工作的创新之处在于同时处理栅极、漏极、源极和体电流以及栅极电压,从而消除了对设置栅极电压边界的依赖。此外,训练数据集由来自不同技术节点(平面、MOSFET、FinFET、全栅极)晶体管的测量数据组成,以提供通用性。与传统的 ML 算法相比,我们的方法能以 3mV 的平均绝对误差率提取 $V_{th}$ ,从而产生更精确的结果,并通过不同的性能指标进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信