Corporate cash policy and double machine learning

Hadi Movaghari, Serafeim Tsoukas, Evangelos Vagenas‐Nanos
{"title":"Corporate cash policy and double machine learning","authors":"Hadi Movaghari, Serafeim Tsoukas, Evangelos Vagenas‐Nanos","doi":"10.1002/ijfe.3039","DOIUrl":null,"url":null,"abstract":"We are the first to explore the role of firm‐level drivers in corporate cash policy applying cutting‐edge double machine learning technique. We identify tangibility of assets and R&D spending as two main driving forces behind the cash increase when they are considered both independently and jointly. Furthermore, our findings support the relevance of the transaction cost model and the refinancing risk of long‐term debt at the beginning of the sample period. In contrast, precautionary motive emerges as more pertinent in contemporary times. Our results are robust to alternative machine learners, cash proxies and estimation methods.","PeriodicalId":501193,"journal":{"name":"International Journal of Finance and Economics","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Finance and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ijfe.3039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are the first to explore the role of firm‐level drivers in corporate cash policy applying cutting‐edge double machine learning technique. We identify tangibility of assets and R&D spending as two main driving forces behind the cash increase when they are considered both independently and jointly. Furthermore, our findings support the relevance of the transaction cost model and the refinancing risk of long‐term debt at the beginning of the sample period. In contrast, precautionary motive emerges as more pertinent in contemporary times. Our results are robust to alternative machine learners, cash proxies and estimation methods.
企业现金政策与双重机器学习
我们首次运用最前沿的双重机器学习技术探讨了企业层面的驱动因素在企业现金政策中的作用。我们发现,资产有形化和研发支出是现金增加背后的两个主要驱动因素,这两个因素既可以单独考虑,也可以共同考虑。此外,我们的研究结果还支持交易成本模型和样本期初长期债务再融资风险的相关性。相比之下,预防动机在当代显得更为重要。我们的结果对其他机器学习器、现金替代物和估计方法都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信