Compressed Test Pattern Generation for Deep Neural Networks

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Dina A. Moussa;Michael Hefenbrock;Mehdi Tahoori
{"title":"Compressed Test Pattern Generation for Deep Neural Networks","authors":"Dina A. Moussa;Michael Hefenbrock;Mehdi Tahoori","doi":"10.1109/TC.2024.3457738","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have emerged as an effective approach in many artificial intelligence tasks. Several specialized accelerators are often used to enhance DNN's performance and lower their energy costs. However, the presence of faults can drastically impair the performance and accuracy of these accelerators. Usually, many test patterns are required for certain types of faults to reach a target fault coverage, which in turn hence increases the testing overhead and storage cost, particularly for in-field testing. For this reason, compression is typically done after test generation step to reduce the storage cost for the generated test patterns. However, compression is more efficient when considered in an earlier stage. This paper generates the test pattern in a compressed form to require less storage. This is done by generating all test patterns as a linear combination of a set of jointly used test patterns (basis), for which only the coefficients need to be stored. The fault coverage achieved by the generated test patterns is compared to that of the adversarial and randomly generated test images. The experimental results showed that our proposed test pattern outperformed and achieved high fault coverage (up to 99.99%) and a high compression ratio (up to 307.2\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n).","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"307-315"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10677000/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) have emerged as an effective approach in many artificial intelligence tasks. Several specialized accelerators are often used to enhance DNN's performance and lower their energy costs. However, the presence of faults can drastically impair the performance and accuracy of these accelerators. Usually, many test patterns are required for certain types of faults to reach a target fault coverage, which in turn hence increases the testing overhead and storage cost, particularly for in-field testing. For this reason, compression is typically done after test generation step to reduce the storage cost for the generated test patterns. However, compression is more efficient when considered in an earlier stage. This paper generates the test pattern in a compressed form to require less storage. This is done by generating all test patterns as a linear combination of a set of jointly used test patterns (basis), for which only the coefficients need to be stored. The fault coverage achieved by the generated test patterns is compared to that of the adversarial and randomly generated test images. The experimental results showed that our proposed test pattern outperformed and achieved high fault coverage (up to 99.99%) and a high compression ratio (up to 307.2 $\times$ ).
深度神经网络的压缩测试模式生成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信