{"title":"Acceleration of Fast Sample Entropy for FPGAs","authors":"Chao Chen;Chengyu Liu;Jianqing Li;Bruno da Silva","doi":"10.1109/TC.2024.3457735","DOIUrl":null,"url":null,"abstract":"Complexity measurement, essential in diverse fields like finance, biomedicine, climate science, and network traffic, demands real-time computation to mitigate risks and losses. Sample Entropy (SampEn) is an efficacious metric which quantifies the complexity by assessing the similarities among microscale patterns within the time-series data. Unfortunately, the conventional implementation of SampEn is computationally demanding, posing challenges for its application in real-time analysis, particularly for long time series. Field Programmable Gate Arrays (FPGAs) offer a promising solution due to their fast processing and energy efficiency, which can be customized to perform specific signal processing tasks directly in hardware. The presented work focuses on accelerating SampEn analysis on FPGAs for efficient time-series complexity analysis. A refined, fast, Lightweight SampEn architecture (LW SampEn) on FPGA, which is optimized to use sorted sequences to reduce computational complexity, is accelerated for FPGAs. Various sorting algorithms on FPGAs are assessed, and novel dynamic loop strategies and micro-architectures are proposed to tackle SampEn's undetermined search boundaries. Multi-source biomedical signals are used to profile the above design and select a proper architecture, underscoring the importance of customizing FPGA design for specific applications. Our optimized architecture achieves a 7x to 560x speedup over standard baseline architecture, enabling real-time processing of time-sensitive data.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10677446/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Complexity measurement, essential in diverse fields like finance, biomedicine, climate science, and network traffic, demands real-time computation to mitigate risks and losses. Sample Entropy (SampEn) is an efficacious metric which quantifies the complexity by assessing the similarities among microscale patterns within the time-series data. Unfortunately, the conventional implementation of SampEn is computationally demanding, posing challenges for its application in real-time analysis, particularly for long time series. Field Programmable Gate Arrays (FPGAs) offer a promising solution due to their fast processing and energy efficiency, which can be customized to perform specific signal processing tasks directly in hardware. The presented work focuses on accelerating SampEn analysis on FPGAs for efficient time-series complexity analysis. A refined, fast, Lightweight SampEn architecture (LW SampEn) on FPGA, which is optimized to use sorted sequences to reduce computational complexity, is accelerated for FPGAs. Various sorting algorithms on FPGAs are assessed, and novel dynamic loop strategies and micro-architectures are proposed to tackle SampEn's undetermined search boundaries. Multi-source biomedical signals are used to profile the above design and select a proper architecture, underscoring the importance of customizing FPGA design for specific applications. Our optimized architecture achieves a 7x to 560x speedup over standard baseline architecture, enabling real-time processing of time-sensitive data.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.