{"title":"FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA","authors":"Yujun Xie;Yuan Liu;Xin Zheng;Bohan Lan;Dengyun Lei;Dehao Xiang;Shuting Cai;Xiaoming Xiong","doi":"10.1109/TC.2024.3457739","DOIUrl":null,"url":null,"abstract":"Montgomery Modular Multiplication (MMM) is widely used in many public key cryptography systems. This paper presents a Flexible Low Area-Latency MMM (FLALM) implementation, which supports Generic Montgomery Modular Multiplication (GMM) and Square Montgomery Modular Multiplication (SMM) operations. A new SMM schedule for the Finely Integrated Product Scanning (FIPS) GMM algorithm is proposed to accelerate SMM with tiny additional design. Furthermore, a new FIPS dual-schedule is proposed to solve the data hazards of this algorithm. Finally, we explore the trade-off between area and latency, and present the FLALM to accelerate GMM and SMM. The FLALM is implemented on FPGA (Virtex-7 platform). The results show that the area*latency (AL) value of FLALM (wordsize \n<inline-formula><tex-math>$w$</tex-math></inline-formula>\n=128) is 38.1% and 44.7% better than the previous state-of-art scalable references when performing 1024-bit and 2048-bit GMM, respectively. Moreover, when computing SMM, the advantage of AL value is raised to 73.7% and 86.3% respectively.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"29-42"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10678749/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Montgomery Modular Multiplication (MMM) is widely used in many public key cryptography systems. This paper presents a Flexible Low Area-Latency MMM (FLALM) implementation, which supports Generic Montgomery Modular Multiplication (GMM) and Square Montgomery Modular Multiplication (SMM) operations. A new SMM schedule for the Finely Integrated Product Scanning (FIPS) GMM algorithm is proposed to accelerate SMM with tiny additional design. Furthermore, a new FIPS dual-schedule is proposed to solve the data hazards of this algorithm. Finally, we explore the trade-off between area and latency, and present the FLALM to accelerate GMM and SMM. The FLALM is implemented on FPGA (Virtex-7 platform). The results show that the area*latency (AL) value of FLALM (wordsize
$w$
=128) is 38.1% and 44.7% better than the previous state-of-art scalable references when performing 1024-bit and 2048-bit GMM, respectively. Moreover, when computing SMM, the advantage of AL value is raised to 73.7% and 86.3% respectively.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.