The adsorption performance of harmful gas (CO, SO) on doped graphene: a first-principle study

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yufeng Liu, Yang Shen, Guanpeng Liu, Wenbing Tu, Jiaming Ni
{"title":"The adsorption performance of harmful gas (CO, SO) on doped graphene: a first-principle study","authors":"Yufeng Liu, Yang Shen, Guanpeng Liu, Wenbing Tu, Jiaming Ni","doi":"10.1088/1361-6641/ad752a","DOIUrl":null,"url":null,"abstract":"The adsorption of gas molecules (CO, SO) by different atoms (Cu, Fe, Pd, Pt, B, N, P, S) doped graphene has been investigated in terms of adsorption energies, charge transfer, and density of states based on the density functional theory. The Result that the metal atoms enhance the interaction of graphene with the above gas molecules much more than the non-metal atoms, and it is due to this strong interaction that the gas molecules (CO, SO) chemisorb on graphene doped with metal atoms. Meanwhile, the metal atom doped graphene is more sensitive to SO molecules. Moreover, the charge transfer of CO/Pd–G is 0.056e, and the adsorption energy is −6.386 eV, and there is a very large deformation of Pt–G after adsorption of SO and the reaction is very violent, with an adsorption energy up to −7.922 eV and a charge transfer up to 0.537e, which is the highest of all systems. Therefore, we believe that Pt–G is suitable for the detection of the SO while Pd–G is suitable for the detection of the CO. In addition, combined with the nature of the work function, we believe that metal-doped graphene has the potential to be a highly sensitive irreversible sensor.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad752a","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption of gas molecules (CO, SO) by different atoms (Cu, Fe, Pd, Pt, B, N, P, S) doped graphene has been investigated in terms of adsorption energies, charge transfer, and density of states based on the density functional theory. The Result that the metal atoms enhance the interaction of graphene with the above gas molecules much more than the non-metal atoms, and it is due to this strong interaction that the gas molecules (CO, SO) chemisorb on graphene doped with metal atoms. Meanwhile, the metal atom doped graphene is more sensitive to SO molecules. Moreover, the charge transfer of CO/Pd–G is 0.056e, and the adsorption energy is −6.386 eV, and there is a very large deformation of Pt–G after adsorption of SO and the reaction is very violent, with an adsorption energy up to −7.922 eV and a charge transfer up to 0.537e, which is the highest of all systems. Therefore, we believe that Pt–G is suitable for the detection of the SO while Pd–G is suitable for the detection of the CO. In addition, combined with the nature of the work function, we believe that metal-doped graphene has the potential to be a highly sensitive irreversible sensor.
掺杂石墨烯对有害气体(CO、SO)的吸附性能:第一原理研究
基于密度泛函理论,从吸附能、电荷转移和状态密度等方面研究了掺杂不同原子(铜、铁、钯、铂、硼、氮、磷、硫)的石墨烯对气体分子(一氧化碳、硫酸)的吸附。结果表明,金属原子比非金属原子更能增强石墨烯与上述气体分子的相互作用,正是由于这种强相互作用,气体分子(CO、SO)才会在掺杂金属原子的石墨烯上发生化学吸附。同时,掺杂金属原子的石墨烯对 SO 分子更为敏感。此外,CO/Pd-G 的电荷转移为 0.056e,吸附能为 -6.386 eV,吸附 SO 后 Pt-G 有非常大的形变,反应非常剧烈,吸附能高达 -7.922 eV,电荷转移高达 0.537e,是所有体系中最高的。因此,我们认为 Pt-G 适合检测 SO,而 Pd-G 适合检测 CO。此外,结合功函数的性质,我们认为掺金属的石墨烯有可能成为一种高灵敏度的不可逆传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信