QoE Estimation Across Different Cloud Gaming Services Using Transfer Learning

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Marcos Carvalho;Daniel Soares;Daniel Fernandes Macedo
{"title":"QoE Estimation Across Different Cloud Gaming Services Using Transfer Learning","authors":"Marcos Carvalho;Daniel Soares;Daniel Fernandes Macedo","doi":"10.1109/TNSM.2024.3451300","DOIUrl":null,"url":null,"abstract":"Cloud Gaming (CG) has become one of the most important cloud-based services in recent years by providing games to different end-network devices, such as personal computers (wired network) and smartphones/tablets (mobile network). CG services stand challenging for network operators since this service demands rigorous network Quality of Services (QoS). Nevertheless, ensuring proper Quality of Experience (QoE) keeps the end-users engaged in the CG services. However, several factors influence users’ experience, such as context (i.e., game type/players) and the end-network type (wired/mobile). In this case, Machine Learning (ML) models have achieved the state-of-the-art on the end-users’ QoE estimation. Despite that, traditional ML models demand a larger amount of data and assume that the training and test have the same distribution, which can make the ML models hard to generalize to other scenarios from what was trained. This work employs Transfer Learning (TL) techniques to create QoE estimation over different cloud gaming services (wired/mobile) and contexts (game type/players). We improved our previous work by performing a subjective QoE assessment with real users playing new games on a mobile cloud gaming testbed. Results show that transfer learning can decrease the average MSE error by at least 34.7% compared to the source model (wired) performance on the mobile cloud gaming and to 81.5% compared with the model trained from scratch.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"5935-5946"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10654293/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud Gaming (CG) has become one of the most important cloud-based services in recent years by providing games to different end-network devices, such as personal computers (wired network) and smartphones/tablets (mobile network). CG services stand challenging for network operators since this service demands rigorous network Quality of Services (QoS). Nevertheless, ensuring proper Quality of Experience (QoE) keeps the end-users engaged in the CG services. However, several factors influence users’ experience, such as context (i.e., game type/players) and the end-network type (wired/mobile). In this case, Machine Learning (ML) models have achieved the state-of-the-art on the end-users’ QoE estimation. Despite that, traditional ML models demand a larger amount of data and assume that the training and test have the same distribution, which can make the ML models hard to generalize to other scenarios from what was trained. This work employs Transfer Learning (TL) techniques to create QoE estimation over different cloud gaming services (wired/mobile) and contexts (game type/players). We improved our previous work by performing a subjective QoE assessment with real users playing new games on a mobile cloud gaming testbed. Results show that transfer learning can decrease the average MSE error by at least 34.7% compared to the source model (wired) performance on the mobile cloud gaming and to 81.5% compared with the model trained from scratch.
利用迁移学习估计不同云游戏服务的 QoE
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信