Yufei An;F. Richard Yu;Ying He;Jianqiang Li;Jianyong Chen;Victor C. M. Leung
{"title":"A Deep Learning System for Detecting IoT Web Attacks With a Joint Embedded Prediction Architecture (JEPA)","authors":"Yufei An;F. Richard Yu;Ying He;Jianqiang Li;Jianyong Chen;Victor C. M. Leung","doi":"10.1109/TNSM.2024.3454777","DOIUrl":null,"url":null,"abstract":"The advancement of Internet of Things (IoT) technology has significantly transformed the dynamic between humans and devices, as well as device-to-device interactions. This paradigm shift has led to profound changes in human lifestyles and production processes. Through the interconnectedness of numerous sensors and controllers via networks, the IoT facilitates the seamless integration of humans with diverse devices, leading to substantial economic advantages. Nevertheless, the burgeoning IoT industry and the rapid proliferation of various IoT devices have also introduced a multitude of security vulnerabilities. Cyber attackers frequently exploit cyber attacks to compromise IoT devices, jeopardizing user privacy and property security, thereby posing a grave menace to the overall security of the IoT ecosystem. In this paper, we propose a novel IoT Web attack detection system based on a joint embedded prediction architecture (JEPA), which effectively alleviates the security issues faced by IoT. It can obtain high-level semantic features in IoT traffic data through non-generative self-supervised learning. These features can more effectively distinguish normal data from attack data and help improve the overall detection performance of the system. Moreover, we propose a feature interaction module based on a dual-branch network, which effectively fuses low-level features and high-level features, and comprehensively aggregates global features and local features. Simulation results on multiple datasets show that our proposed system has better detection performance and robustness.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6885-6898"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10666838/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The advancement of Internet of Things (IoT) technology has significantly transformed the dynamic between humans and devices, as well as device-to-device interactions. This paradigm shift has led to profound changes in human lifestyles and production processes. Through the interconnectedness of numerous sensors and controllers via networks, the IoT facilitates the seamless integration of humans with diverse devices, leading to substantial economic advantages. Nevertheless, the burgeoning IoT industry and the rapid proliferation of various IoT devices have also introduced a multitude of security vulnerabilities. Cyber attackers frequently exploit cyber attacks to compromise IoT devices, jeopardizing user privacy and property security, thereby posing a grave menace to the overall security of the IoT ecosystem. In this paper, we propose a novel IoT Web attack detection system based on a joint embedded prediction architecture (JEPA), which effectively alleviates the security issues faced by IoT. It can obtain high-level semantic features in IoT traffic data through non-generative self-supervised learning. These features can more effectively distinguish normal data from attack data and help improve the overall detection performance of the system. Moreover, we propose a feature interaction module based on a dual-branch network, which effectively fuses low-level features and high-level features, and comprehensively aggregates global features and local features. Simulation results on multiple datasets show that our proposed system has better detection performance and robustness.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.