DGS: An Efficient Delay-Guaranteed Scheduling Framework for Wireless Deterministic Networking

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Minghui Chang;Haojun Lv;Yunqi Gao;Bing Hu;Wei Wang;Ze Yang
{"title":"DGS: An Efficient Delay-Guaranteed Scheduling Framework for Wireless Deterministic Networking","authors":"Minghui Chang;Haojun Lv;Yunqi Gao;Bing Hu;Wei Wang;Ze Yang","doi":"10.1109/TNSM.2024.3456576","DOIUrl":null,"url":null,"abstract":"Deterministic Networking (DetNet) aims to provide an end-to-end ultra-reliable data network with ultra-low latency and jitter. However, implementing DetNet in wireless networks, particularly in the air interface, still faces the challenge of guaranteeing bounded delay. This paper proposes a delay-guaranteed three-layer scheduling framework for DetNet, named Deterministic Guarantee Scheduling (DGS). The top layer calculates the amount of new data entering the queue in each scheduling period and timestamps the data to track its arrival time. Based on the remaining waiting time of each flow’s data volume, the middle layer proposes a scheduling algorithm based on urgency, prioritizing the scheduling of data volumes with the shortest remaining queuing time. The lower layer fine-tunes the scheduling results obtained by the middle layer for actual transmission. We implemented the DGS framework on the 5G-air-simulator platform. Simulation results demonstrate that DGS outperforms all other mechanisms by guaranteeing delay for a larger number of deterministic flows and achieving better throughput performance.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6582-6596"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669629/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deterministic Networking (DetNet) aims to provide an end-to-end ultra-reliable data network with ultra-low latency and jitter. However, implementing DetNet in wireless networks, particularly in the air interface, still faces the challenge of guaranteeing bounded delay. This paper proposes a delay-guaranteed three-layer scheduling framework for DetNet, named Deterministic Guarantee Scheduling (DGS). The top layer calculates the amount of new data entering the queue in each scheduling period and timestamps the data to track its arrival time. Based on the remaining waiting time of each flow’s data volume, the middle layer proposes a scheduling algorithm based on urgency, prioritizing the scheduling of data volumes with the shortest remaining queuing time. The lower layer fine-tunes the scheduling results obtained by the middle layer for actual transmission. We implemented the DGS framework on the 5G-air-simulator platform. Simulation results demonstrate that DGS outperforms all other mechanisms by guaranteeing delay for a larger number of deterministic flows and achieving better throughput performance.
DGS:无线确定性网络的高效延迟保证调度框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信