Minghui Chang;Haojun Lv;Yunqi Gao;Bing Hu;Wei Wang;Ze Yang
{"title":"DGS: An Efficient Delay-Guaranteed Scheduling Framework for Wireless Deterministic Networking","authors":"Minghui Chang;Haojun Lv;Yunqi Gao;Bing Hu;Wei Wang;Ze Yang","doi":"10.1109/TNSM.2024.3456576","DOIUrl":null,"url":null,"abstract":"Deterministic Networking (DetNet) aims to provide an end-to-end ultra-reliable data network with ultra-low latency and jitter. However, implementing DetNet in wireless networks, particularly in the air interface, still faces the challenge of guaranteeing bounded delay. This paper proposes a delay-guaranteed three-layer scheduling framework for DetNet, named Deterministic Guarantee Scheduling (DGS). The top layer calculates the amount of new data entering the queue in each scheduling period and timestamps the data to track its arrival time. Based on the remaining waiting time of each flow’s data volume, the middle layer proposes a scheduling algorithm based on urgency, prioritizing the scheduling of data volumes with the shortest remaining queuing time. The lower layer fine-tunes the scheduling results obtained by the middle layer for actual transmission. We implemented the DGS framework on the 5G-air-simulator platform. Simulation results demonstrate that DGS outperforms all other mechanisms by guaranteeing delay for a larger number of deterministic flows and achieving better throughput performance.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6582-6596"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669629/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deterministic Networking (DetNet) aims to provide an end-to-end ultra-reliable data network with ultra-low latency and jitter. However, implementing DetNet in wireless networks, particularly in the air interface, still faces the challenge of guaranteeing bounded delay. This paper proposes a delay-guaranteed three-layer scheduling framework for DetNet, named Deterministic Guarantee Scheduling (DGS). The top layer calculates the amount of new data entering the queue in each scheduling period and timestamps the data to track its arrival time. Based on the remaining waiting time of each flow’s data volume, the middle layer proposes a scheduling algorithm based on urgency, prioritizing the scheduling of data volumes with the shortest remaining queuing time. The lower layer fine-tunes the scheduling results obtained by the middle layer for actual transmission. We implemented the DGS framework on the 5G-air-simulator platform. Simulation results demonstrate that DGS outperforms all other mechanisms by guaranteeing delay for a larger number of deterministic flows and achieving better throughput performance.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.