Reliable Task Offloading in Sustainable Edge Computing with Imperfect Channel State Information

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Peng Peng;Wentai Wu;Weiwei Lin;Fan Zhang;Yongheng Liu;Keqin Li
{"title":"Reliable Task Offloading in Sustainable Edge Computing with Imperfect Channel State Information","authors":"Peng Peng;Wentai Wu;Weiwei Lin;Fan Zhang;Yongheng Liu;Keqin Li","doi":"10.1109/TNSM.2024.3456568","DOIUrl":null,"url":null,"abstract":"As a promising paradigm, edge computing enhances service provisioning by offloading tasks to powerful servers at the network edge. Meanwhile, Non-Orthogonal Multiple Access (NOMA) and renewable energy sources are increasingly adopted for spectral efficiency and carbon footprint reduction. However, these new techniques inevitably introduce reliability risks to the edge system generally because of i) imperfect Channel State Information (CSI), which can misguide offloading decisions and cause transmission outages, and ii) unstable renewable energy supply, which complicates device availability. To tackle these issues, we first establish a system model that measures service reliability based on probabilistic principles for the NOMA-based edge system. As a solution, a Reliable Offloading method with Multi-Agent deep reinforcement learning (ROMA) is proposed. In ROMA, we first reformulate the reliability-critical constraint into an long-term optimization problem via Lyapunov optimization. We discretize the hybrid action space and convert the resource allocation on edge servers into a 0-1 knapsack problem. The optimization problem is then formulated as a Partially Observable Markov Decision Process (POMDP) and addressed by multi-agent proximal policy optimization (PPO). Experimental evaluations demonstrate the superiority of ROMA over existing methods in reducing grid energy costs and enhancing system reliability, achieving Pareto-optimal performance under various settings.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6423-6436"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669621/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

As a promising paradigm, edge computing enhances service provisioning by offloading tasks to powerful servers at the network edge. Meanwhile, Non-Orthogonal Multiple Access (NOMA) and renewable energy sources are increasingly adopted for spectral efficiency and carbon footprint reduction. However, these new techniques inevitably introduce reliability risks to the edge system generally because of i) imperfect Channel State Information (CSI), which can misguide offloading decisions and cause transmission outages, and ii) unstable renewable energy supply, which complicates device availability. To tackle these issues, we first establish a system model that measures service reliability based on probabilistic principles for the NOMA-based edge system. As a solution, a Reliable Offloading method with Multi-Agent deep reinforcement learning (ROMA) is proposed. In ROMA, we first reformulate the reliability-critical constraint into an long-term optimization problem via Lyapunov optimization. We discretize the hybrid action space and convert the resource allocation on edge servers into a 0-1 knapsack problem. The optimization problem is then formulated as a Partially Observable Markov Decision Process (POMDP) and addressed by multi-agent proximal policy optimization (PPO). Experimental evaluations demonstrate the superiority of ROMA over existing methods in reducing grid energy costs and enhancing system reliability, achieving Pareto-optimal performance under various settings.
不完善信道状态信息下可持续边缘计算中的可靠任务卸载
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信