Time-Distributed Feature Learning for Internet of Things Network Traffic Classification

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yoga Suhas Kuruba Manjunath;Sihao Zhao;Xiao-Ping Zhang;Lian Zhao
{"title":"Time-Distributed Feature Learning for Internet of Things Network Traffic Classification","authors":"Yoga Suhas Kuruba Manjunath;Sihao Zhao;Xiao-Ping Zhang;Lian Zhao","doi":"10.1109/TNSM.2024.3457579","DOIUrl":null,"url":null,"abstract":"Deep learning-based network traffic classification (NTC) techniques, including conventional and class-of-service (CoS) classifiers, are a popular tool that aids in the quality of service (QoS) and radio resource management for the Internet of Things (IoT) network. Holistic temporal features consist of inter-, intra-, and pseudo-temporal features within packets, between packets, and among flows, providing the maximum information on network services without depending on defined classes in a problem. Conventional spatio-temporal features in the current solutions extract only space and time information between packets and flows, ignoring the information within packets and flow for IoT traffic. Therefore, we propose a new, efficient, holistic feature extraction method for deep-learning-based NTC using time-distributed feature learning to maximize the accuracy of the NTC. We apply a time-distributed wrapper on deep-learning layers to help extract pseudo-temporal features and spatio-temporal features. Pseudo-temporal features are mathematically complex to explain since, in deep learning, a black box extracts them. However, the features are temporal because of the time-distributed wrapper; therefore, we call them pseudo-temporal features. Since our method is efficient in learning holistic-temporal features, we can extend our method to both conventional and CoS NTC. Our solution proves that pseudo-temporal and spatial-temporal features can significantly improve the robustness and performance of any NTC. We analyze the solution theoretically and experimentally on different real-world datasets. The experimental results show that the holistic-temporal time-distributed feature learning method, on average, is 13.5% more accurate than the state-of-the-art conventional and CoS classifiers.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6566-6581"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10673991/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based network traffic classification (NTC) techniques, including conventional and class-of-service (CoS) classifiers, are a popular tool that aids in the quality of service (QoS) and radio resource management for the Internet of Things (IoT) network. Holistic temporal features consist of inter-, intra-, and pseudo-temporal features within packets, between packets, and among flows, providing the maximum information on network services without depending on defined classes in a problem. Conventional spatio-temporal features in the current solutions extract only space and time information between packets and flows, ignoring the information within packets and flow for IoT traffic. Therefore, we propose a new, efficient, holistic feature extraction method for deep-learning-based NTC using time-distributed feature learning to maximize the accuracy of the NTC. We apply a time-distributed wrapper on deep-learning layers to help extract pseudo-temporal features and spatio-temporal features. Pseudo-temporal features are mathematically complex to explain since, in deep learning, a black box extracts them. However, the features are temporal because of the time-distributed wrapper; therefore, we call them pseudo-temporal features. Since our method is efficient in learning holistic-temporal features, we can extend our method to both conventional and CoS NTC. Our solution proves that pseudo-temporal and spatial-temporal features can significantly improve the robustness and performance of any NTC. We analyze the solution theoretically and experimentally on different real-world datasets. The experimental results show that the holistic-temporal time-distributed feature learning method, on average, is 13.5% more accurate than the state-of-the-art conventional and CoS classifiers.
用于物联网网络流量分类的时间分布式特征学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信