MPC-Based 5G uRLLC Rate Calculation

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jun Liu;Paulo Renato da Costa Mendes;Andreas Wirsen;Daniel Görges
{"title":"MPC-Based 5G uRLLC Rate Calculation","authors":"Jun Liu;Paulo Renato da Costa Mendes;Andreas Wirsen;Daniel Görges","doi":"10.1109/TNSM.2024.3459634","DOIUrl":null,"url":null,"abstract":"The development of 5G enables communication systems to satisfy heterogeneous service requirements of novel applications. For instance, ultra-reliable low latency communication (uRLLC) is applicable for many safety-critical and latency-sensitive scenarios. Many research papers aim to convert the stringent reliability and latency factors to a static data rate requirement. However, in most industrial scenarios, the communication traffic presents short-term/long-term dependency, burst, and non-stationary characteristics. This makes it more challenging to obtain a tight upper bound for the rate requirement of uRLLC. In this work, we introduce a novel solution based on decentralized model predictive control (MPC), where the dynamic incoming communication traffic and the users’ quality of service (QoS) requirements are reformulated into an up-to-date data rate constraint. Under such assumptions, we consider a use case of the resource allocation problem for a single uRLLC network slice. The allocation task is solved by the successive convex approximation (SCA) algorithm for a more in-depth analysis. The simulation results show that the proposed algorithm can deal with non-stationary communication traffic in real-time, as well as provide good performance with guaranteed delay and reliability requirements.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6770-6795"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679265","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679265/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of 5G enables communication systems to satisfy heterogeneous service requirements of novel applications. For instance, ultra-reliable low latency communication (uRLLC) is applicable for many safety-critical and latency-sensitive scenarios. Many research papers aim to convert the stringent reliability and latency factors to a static data rate requirement. However, in most industrial scenarios, the communication traffic presents short-term/long-term dependency, burst, and non-stationary characteristics. This makes it more challenging to obtain a tight upper bound for the rate requirement of uRLLC. In this work, we introduce a novel solution based on decentralized model predictive control (MPC), where the dynamic incoming communication traffic and the users’ quality of service (QoS) requirements are reformulated into an up-to-date data rate constraint. Under such assumptions, we consider a use case of the resource allocation problem for a single uRLLC network slice. The allocation task is solved by the successive convex approximation (SCA) algorithm for a more in-depth analysis. The simulation results show that the proposed algorithm can deal with non-stationary communication traffic in real-time, as well as provide good performance with guaranteed delay and reliability requirements.
基于 MPC 的 5G uRLLC 速率计算
5G的发展使通信系统能够满足新应用的异构业务需求。例如,超可靠的低延迟通信(uRLLC)适用于许多安全关键和延迟敏感的场景。许多研究论文旨在将严格的可靠性和延迟因素转换为静态数据速率要求。然而,在大多数工业场景中,通信流量呈现出短期/长期依赖、突发和非平稳特征。这使得获得uRLLC的速率需求的严格上限更具挑战性。在这项工作中,我们引入了一种基于分散模型预测控制(MPC)的新解决方案,其中动态传入通信流量和用户的服务质量(QoS)要求被重新制定为最新的数据速率约束。在这样的假设下,我们考虑单个uRLLC网络片的资源分配问题的用例。为了进行更深入的分析,采用逐次凸逼近(SCA)算法求解分配任务。仿真结果表明,该算法能够实时处理非稳态通信流量,在保证时延和可靠性的前提下,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信