{"title":"Collaborative Cloud Resource Management and Task Consolidation Using JAYA Variants","authors":"Kaushik Mishra;Santosh Kumar Majhi;Kshira Sagar Sahoo;Sourav Kumar Bhoi;Monowar Bhuyan;Amir H. Gandomi","doi":"10.1109/TNSM.2024.3443285","DOIUrl":null,"url":null,"abstract":"In Cloud-based computing, job scheduling and load balancing are vital to ensure on-demand dynamic resource provisioning. However, reducing the scheduling parameters may affect datacenter performance due to the fluctuating on-demand requests. To deal with the aforementioned challenges, this research proposes a job scheduling algorithm, which is an improved version of a swarm intelligence algorithm. Two approaches, namely linear weight JAYA (LWJAYA) and chaotic JAYA (CJAYA), are implemented to improve the convergence speed for optimal results. Besides, a load-balancing technique is incorporated in line with job scheduling. Dynamically independent and non-pre-emptive jobs were considered for the simulations, which were simulated on two disparate test cases with homogeneous and heterogeneous VMs. The efficiency of the proposed technique was validated against a synthetic and real-world dataset from NASA, and evaluated against several top-of-the-line intelligent optimization techniques, based on the Holm’s test and Friedman test. Findings of the experiment show that the suggested approach performs better than the alternative approaches.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6248-6259"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10636847","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636847/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In Cloud-based computing, job scheduling and load balancing are vital to ensure on-demand dynamic resource provisioning. However, reducing the scheduling parameters may affect datacenter performance due to the fluctuating on-demand requests. To deal with the aforementioned challenges, this research proposes a job scheduling algorithm, which is an improved version of a swarm intelligence algorithm. Two approaches, namely linear weight JAYA (LWJAYA) and chaotic JAYA (CJAYA), are implemented to improve the convergence speed for optimal results. Besides, a load-balancing technique is incorporated in line with job scheduling. Dynamically independent and non-pre-emptive jobs were considered for the simulations, which were simulated on two disparate test cases with homogeneous and heterogeneous VMs. The efficiency of the proposed technique was validated against a synthetic and real-world dataset from NASA, and evaluated against several top-of-the-line intelligent optimization techniques, based on the Holm’s test and Friedman test. Findings of the experiment show that the suggested approach performs better than the alternative approaches.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.