Cloud-Edge-End Collaborative Intelligent Service Computation Offloading: A Digital Twin Driven Edge Coalition Approach for Industrial IoT

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaohuan Li;Bitao Chen;Junchuan Fan;Jiawen Kang;Jin Ye;Xun Wang;Dusit Niyato
{"title":"Cloud-Edge-End Collaborative Intelligent Service Computation Offloading: A Digital Twin Driven Edge Coalition Approach for Industrial IoT","authors":"Xiaohuan Li;Bitao Chen;Junchuan Fan;Jiawen Kang;Jin Ye;Xun Wang;Dusit Niyato","doi":"10.1109/TNSM.2024.3441231","DOIUrl":null,"url":null,"abstract":"By using the intelligent edge computing technologies, a large number of computing tasks of end devices in Industrial Internet of Things (IIoT) can be offloaded to edge servers, which can effectively alleviate the burden and enhance the performance of IIoT. However, in large-scale multi-service-oriented IIoT scenarios, offloading service resources are heterogeneous and offloading requirements are mutually exclusive and time-varying, which reduce the offloading efficiency. In this paper, we propose a cloud-edge-end collaboration intelligent service computation offloading scheme based on Digital Twin (DT) driven Edge Coalition Formation (DECF) approach to improve the offloading efficiency and the total utility of edge servers, respectively. Firstly, we establish a DT model to obtain accurate digital representations of heterogeneous end devices and network state parameters in dynamic and complex IIoT scenarios. The DT model can capture time-varying requirements in a low latency manner. Secondly, we formulate two optimization problems to maximize the offloading throughput and total system utility. Finally, we convert the multi-objective optimization problems to a Stackelberg coalition game model and develop a distributed coalition formation approach to balance the two optimizing objectives. Simulation results indicate that, compared with the nearest coalition scheme and non-coalition scheme, the proposed approach achieves offloading throughput improvements of 11.5% and 148%, and enhances the overall utility by 12% and 170%, respectively.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6318-6330"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10639522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639522/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

By using the intelligent edge computing technologies, a large number of computing tasks of end devices in Industrial Internet of Things (IIoT) can be offloaded to edge servers, which can effectively alleviate the burden and enhance the performance of IIoT. However, in large-scale multi-service-oriented IIoT scenarios, offloading service resources are heterogeneous and offloading requirements are mutually exclusive and time-varying, which reduce the offloading efficiency. In this paper, we propose a cloud-edge-end collaboration intelligent service computation offloading scheme based on Digital Twin (DT) driven Edge Coalition Formation (DECF) approach to improve the offloading efficiency and the total utility of edge servers, respectively. Firstly, we establish a DT model to obtain accurate digital representations of heterogeneous end devices and network state parameters in dynamic and complex IIoT scenarios. The DT model can capture time-varying requirements in a low latency manner. Secondly, we formulate two optimization problems to maximize the offloading throughput and total system utility. Finally, we convert the multi-objective optimization problems to a Stackelberg coalition game model and develop a distributed coalition formation approach to balance the two optimizing objectives. Simulation results indicate that, compared with the nearest coalition scheme and non-coalition scheme, the proposed approach achieves offloading throughput improvements of 11.5% and 148%, and enhances the overall utility by 12% and 170%, respectively.
云-端协作智能服务计算卸载:面向工业物联网的数字孪生驱动边缘联盟方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信