Node-Oriented Slice Reconfiguration Based on Spatial and Temporal Traffic Prediction in Metro Optical Networks

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bowen Bao;Hui Yang;Qiuyan Yao;Jie Zhang;Bijoy Chand Chatterjee;Eiji Oki
{"title":"Node-Oriented Slice Reconfiguration Based on Spatial and Temporal Traffic Prediction in Metro Optical Networks","authors":"Bowen Bao;Hui Yang;Qiuyan Yao;Jie Zhang;Bijoy Chand Chatterjee;Eiji Oki","doi":"10.1109/TNSM.2024.3453381","DOIUrl":null,"url":null,"abstract":"Given the spring-up of diverse new applications with different requirements in metro optical networks, network slicing provides a virtual end-to-end resource connection with customized service provision. To improve the quality-of-service (QoS) of slices with long-term operation in networks, it is beneficial to reconfigure the slice adaptively, referring to the future traffic state. Considering the busy-hour Internet traffic with daily human mobility, the tidal pattern of traffic flow occurs in metro optical networks, expressing both temporal and spatial features. To achieve high QoS of slices, this paper proposes a node-oriented slice reconfiguration (NoSR) scheme to reduce the penalty of slices, where a gradient-based priority strategy is designed to reduce the penalties of slices overall penalties in reconfiguration. Besides, given that a precise traffic prediction model is essential for efficient slice reconfiguration with future traffic state, this paper presents the model combining the graph convolutional network (GCN) and gated recurrent unit (GRU) to extract the traffic features in space and time dimensions. Simulation results show that the presented GCN-GRU traffic prediction model achieves a high forecasting accuracy, and the proposed NoSR scheme efficiently reduces the penalty of slices to guarantee a high QoS in metro optical networks.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 6","pages":"6731-6743"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663436/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Given the spring-up of diverse new applications with different requirements in metro optical networks, network slicing provides a virtual end-to-end resource connection with customized service provision. To improve the quality-of-service (QoS) of slices with long-term operation in networks, it is beneficial to reconfigure the slice adaptively, referring to the future traffic state. Considering the busy-hour Internet traffic with daily human mobility, the tidal pattern of traffic flow occurs in metro optical networks, expressing both temporal and spatial features. To achieve high QoS of slices, this paper proposes a node-oriented slice reconfiguration (NoSR) scheme to reduce the penalty of slices, where a gradient-based priority strategy is designed to reduce the penalties of slices overall penalties in reconfiguration. Besides, given that a precise traffic prediction model is essential for efficient slice reconfiguration with future traffic state, this paper presents the model combining the graph convolutional network (GCN) and gated recurrent unit (GRU) to extract the traffic features in space and time dimensions. Simulation results show that the presented GCN-GRU traffic prediction model achieves a high forecasting accuracy, and the proposed NoSR scheme efficiently reduces the penalty of slices to guarantee a high QoS in metro optical networks.
基于城域光网络时空流量预测的节点导向切片重组
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信