{"title":"Biomolecule identification using superlattice AlGaN/GaN high-K MOSHEMT: a cutting-edge biosensing technique","authors":"Tulip Kumar Saha, Moumita Mukherjee, Rudra Sankar Dhar","doi":"10.1007/s00542-024-05738-4","DOIUrl":null,"url":null,"abstract":"<p>This paper presents biomolecule identification process using a novel biosensing technique with high-K metal–oxide–semiconductor high electron mobility transistor (MOSHEMT). The authors have simulated a MOSHEMT device with high-K dielectric material to improve the sensitivity of biosensors. High-K dielectric material is utilized to examine the electrical efficacy of MOSHEMT-based biosensors. When high-K materials are used, two-dimensional electron gas (2DEG) benefits from carrier confinement and leakage current reduction. Therefore, the on-current of the device has been increased. For numerical modeling, TCAD Silvaco Atlas is used. For label-free identification of biomolecules, simulator is used to investigate and compare various performance parameters with SiO<sub>2</sub> MOSHEMT. Experimental evidence verifies the accuracy of the model. According to the authors' knowledge, this is the first investigation on high-K dielectric AlGaN/GaN MOSHEMT biosensors for efficient label-free biomolecule detection. AlGaN/GaN MOSHEMTs, which use a high-K material, are found to be promising for use in biosensors.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05738-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents biomolecule identification process using a novel biosensing technique with high-K metal–oxide–semiconductor high electron mobility transistor (MOSHEMT). The authors have simulated a MOSHEMT device with high-K dielectric material to improve the sensitivity of biosensors. High-K dielectric material is utilized to examine the electrical efficacy of MOSHEMT-based biosensors. When high-K materials are used, two-dimensional electron gas (2DEG) benefits from carrier confinement and leakage current reduction. Therefore, the on-current of the device has been increased. For numerical modeling, TCAD Silvaco Atlas is used. For label-free identification of biomolecules, simulator is used to investigate and compare various performance parameters with SiO2 MOSHEMT. Experimental evidence verifies the accuracy of the model. According to the authors' knowledge, this is the first investigation on high-K dielectric AlGaN/GaN MOSHEMT biosensors for efficient label-free biomolecule detection. AlGaN/GaN MOSHEMTs, which use a high-K material, are found to be promising for use in biosensors.